HOMEWORK 5 — SOLUTIONS

Problem 1: To prove the claim we use Arzela-Ascoli theorem. To use
the theorem we need to check equicontinuity and uniform boundedness.

Equicontinuity immediately follows from the uniform boundedness of

(fn):

for all n and z € [a, b].
Uniform boundedness:
Since | f,(zo)| < C for all n and some 0 < C' < oo, then

()] < [fu(20)] +|/ fu(s)ds| < C+ Mlz — a9l < C+ M(b—a)

for all n € N and x € [a, b].
Problem 2: Let f : R — R be Lipschitz with Lipschitz constant L.
Suppose y1, Yo : [t1,ts] — R are both solutions of

with
y1(0) = 2(0) = wo,
where —o0 < t; < 0 < ty < o0.
Let 2(t) = (y1(t) — y2(t))%. Then

2] = 12(01 (1) = 2(8) (1.(1) — w(1))] =
= 2[y1(t) — 2 (OI1f (wr(8)) — f(12())] < [f Lipschitz] <
2Ly (t) — a(t)|* = 2Lx(2).
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Then for ¢ € [0, 5] it holds that

t t
2(t) = / 2 (s)ds < / 2Lz(s)ds.
0 0
Gronwall’s inequality with C' = 0 and ¢(t) = 2L gives
z(t)=0  for all ¢t € [0,¢s].
Similarly, applying Gronwall’s inequality to w(t) = z(—t) for t €

[0, —t1] gives
2(t)=0  forall t € [t1,0].

From the definition of z(t) = (y1(t) — y2(¢))? we get

yi(t) = ya(t)

for all ¢t € [t1, to].

Problem 3: Here g(t) > 0, u(t), C(t) are continuous functions on

[a, b].
(a) Suppose u(t) satisfies
u(t) < C(t) +/ g(s)u(s)ds.

Introduce v(t) = u(t) — C'(t). Then in terms of v the inequality
above reads as

o(t) < / 4(5)(u(s) + C(s))ds.

Let
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Then w(t) is continuously differentiable on [a, b] with

w'(t) = g(t)(v(t) + C(1)) < g(t)w(t) + g(t)C(1).

Equivalently,

w'(t) — g(Hw(t) < g(H)C(1).

Multiply the inequality by the so-called integrating factor e~ Ja9(5)

to get
w/(t)e_ Jig(s)ds _ g(t)e” N g(s)dsw(t) < g(t)C(t)e” f;g(s)ds.

The left side of the inequality is now a total derivative:

d

E (w(t)e_ fatg(s)ds) < g(t)C’(t)e_ f;g(s)ds.

Integrate the above inequality over [a, t] to get (note that w(a) =
0)

w(t)e Jass)ds < /t g(5)C/(s)e™ Ja 9mr g
Multiplying the above inequality by eJa 99185 anq using [ ; — [ as =
fst gives
wl(t) < / g(5)Cs)elt s,
Now from )
u(t) = v(t) + C(t) < w(t) + C(t)

we deduce

u(t) < C(t) + /tg(s)C'(s)eﬁg(r)drds.

S
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(b) Now suppose C(t) is increasing. Then

t . ¢ \
/g(S)C(S)QfSQ(T)drdSSc(t)/ g(S)efsg(r)drdS.

Note that

t ‘ t d
fs g(r)dr — f g(r)dr o
/a g(s)e ds / o (e )ds

= —ef;g(r)d’"]ib = eloodr _q.

From part (a) we now obtain

t t
u(t) < C0)+ [ gls)C(s)el ds <
t ¢ ) t
<O+ [ glo)el10ds) = Oyl

Problem 4: Suppose y(t) is a solution of y/(t) = f(y(t)), defined for
t €10,7T) for some 0 < T < 0.

(a) Suppose |f(z)] < M for all x € R. Then
'] = [fw®) <M

and therefore
ly(t)] < [y(0)] + Mt < |y(0)] + MT.

Therefore y(t) remains bounded when ¢ stays bounded.

(b) Now suppose f grows at most linearly. That is, |f(z)| < Clz|+
K for all x € R. Then

i |—|/ |—|/f

/(K+C’|y( )y)ds<KT+c/ y(s)|ds.
0
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Consequently,

umﬂsmw+KT+q[W@us

for all ¢t € [0,T). Applying Gronwall’s inequality to |y(t)| gives
y()] < (Jy(0)] + KT)e" < (Jy(0)] + KT)e .
Again, y(t) remains bounded when ¢ stays bounded.
Problem 5:

STEP 1: Main Observation: By integrating the ODE, it is equiv-

alent to
[ vy = [ siotsnas

y@—mzéf@@ﬂs
yw=m+AU@@m8
STEP 2: Let 7 > 0 TBA

Since f is continuous, it is bounded around wy: There is some r > 0
and C > 0 such that |f(z)| < C for all x € [yo — r, yo + 7.

Let X be the space of continuous functions y : [—7, 7] — [yo — 7, Yo + 7]
with the sup norm.

Given y € X, define ®(y) € X (to be shown) by

@@@:%+Afwmw
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We're done once we show that & has a fixed point y, because then
®(y) = y and we get,

y(t) = yo —l—/o f(y(s))dsv

STEP 3: Proof that ¢ is a contraction

First show that ® : X — X: Notice that if y is continuous, then fot f(y)
is continuous (in fact differentiable) and hence ®(y)(¢) is continuous.
Moreover

[D(y)(t) — yo| = /Of(y(s))ds S/O \f(y)|ds§/0 Cds=Ct<Cr<r

Provided you choose 7 such that 7C' <r

Hence ®(y) € [yo — 7, yo + 7] and so ®(y) € X.
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Moreover, ® is a contraction because

t

d(®(y), (z)) =sup yo+/ fly(s))ds — (yo+/ f(z >|

Sw/f (2(5))ds

QW/U (2(s))] ds

§/ |f(y(s)) — f(2(s))| ds (the integral is increasing in t)
0

< [ (suwlstnts) - st ) as

:<%mﬂwg%¢u@m>él

<Lsuply(s) = =(s)| 7
=L7d(y, 2)

This becomes a contraction provided we choose 7 so that L7 < 1

STEP 4: Uniqueness

Any other solution z(t) is also a fixed point of ®, that is ®(z) = z.
Since a contraction has a unique fixed point, we have z = y. This is
what local uniqueness means. [



