HOMEWORK $5-$ SOLUTIONS

Problem 1: To prove the claim we use Arzela-Ascoli theorem. To use the theorem we need to check equicontinuity and uniform boundedness.

Equicontinuity immediately follows from the uniform boundedness of $\left(f_{n}^{\prime}\right)$:

$$
\left|f_{n}^{\prime}\right| \leq M \Rightarrow\left|f_{n}(x)-f_{n}(y)\right| \leq M|x-y|
$$

for all n and $x \in[a, b]$.
Uniform boundedness:
Since $\left|f_{n}\left(x_{0}\right)\right| \leq C$ for all n and some $0 \leq C<\infty$, then

$$
\left|f_{n}(x)\right| \leq\left|f_{n}\left(x_{0}\right)\right|+\left|\int_{x_{0}}^{x} f_{n}^{\prime}(s) d s\right| \leq C+M\left|x-x_{0}\right| \leq C+M(b-a)
$$

for all $n \in \mathbb{N}$ and $x \in[a, b]$.
Problem 2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz with Lipschitz constant L. Suppose $y_{1}, y_{2}:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}$ are both solutions of

$$
y^{\prime}=f(y)
$$

with

$$
y_{1}(0)=y_{2}(0)=y_{0}
$$

where $-\infty<t_{1}<0<t_{2}<\infty$.
Let $z(t)=\left(y_{1}(t)-y_{2}(t)\right)^{2}$. Then

$$
\begin{gathered}
\left|z^{\prime}(t)\right|=\left|2\left(y_{1}(t)-y_{2}(t)\right)\left(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)\right)\right|= \\
=2\left|y_{1}(t)-y_{2}(t)\right|\left|f\left(y_{1}(t)\right)-f\left(y_{2}(t)\right)\right| \leq[f \quad \text { Lipschitz }] \leq \\
2 L\left|y_{1}(t)-y_{2}(t)\right|^{2}=2 L z(t)
\end{gathered}
$$

Then for $t \in\left[0, t_{2}\right]$ it holds that

$$
z(t)=\int_{0}^{t} z^{\prime}(s) d s \leq \int_{0}^{t} 2 L z(s) d s
$$

Gronwall's inequality with $C=0$ and $g(t)=2 L$ gives

$$
z(t)=0 \quad \text { for all } t \in\left[0, t_{2}\right] .
$$

Similarly, applying Gronwall's inequality to $w(t)=z(-t)$ for $t \in$ [$0,-t_{1}$] gives

$$
z(t)=0 \quad \text { for all } t \in\left[t_{1}, 0\right]
$$

From the definition of $z(t)=\left(y_{1}(t)-y_{2}(t)\right)^{2}$ we get

$$
y_{1}(t)=y_{2}(t)
$$

for all $t \in\left[t_{1}, t_{2}\right]$.
Problem 3: Here $g(t) \geq 0, u(t), C(t)$ are continuous functions on $[a, b]$.
(a) Suppose $u(t)$ satisfies

$$
u(t) \leq C(t)+\int_{a}^{t} g(s) u(s) d s
$$

Introduce $v(t)=u(t)-C(t)$. Then in terms of v the inequality above reads as

$$
v(t) \leq \int_{a}^{t} g(s)(v(s)+C(s)) d s
$$

Let

$$
w(t)=\int_{a}^{t} g(s)(v(s)+C(s)) d s
$$

Then $w(t)$ is continuously differentiable on $[a, b]$ with

$$
w^{\prime}(t)=g(t)(v(t)+C(t)) \leq g(t) w(t)+g(t) C(t)
$$

Equivalently,

$$
w^{\prime}(t)-g(t) w(t) \leq g(t) C(t)
$$

Multiply the inequality by the so-called integrating factor $e^{-\int_{a}^{t} g(s) d s}$ to get

$$
w^{\prime}(t) e^{-\int_{a}^{t} g(s) d s}-g(t) e^{-\int_{a}^{t} g(s) d s} w(t) \leq g(t) C(t) e^{-\int_{a}^{t} g(s) d s} .
$$

The left side of the inequality is now a total derivative:

$$
\frac{d}{d t}\left(w(t) e^{-\int_{a}^{t} g(s) d s}\right) \leq g(t) C(t) e^{-\int_{a}^{t} g(s) d s}
$$

Integrate the above inequality over $[a, t]$ to get (note that $w(a)=$ 0)

$$
w(t) e^{-\int_{a}^{t} g(s) d s} \leq \int_{a}^{t} g(s) C(s) e^{-\int_{a}^{s} g(r) d r} d s
$$

Multiplying the above inequality by $e^{\int_{a}^{t} g(s) d s}$ and using $\int_{a}^{t}-\int_{a}^{s}=$ \int_{s}^{t} gives

$$
w(t) \leq \int_{a}^{t} g(s) C(s) e^{\int_{s}^{t} g(r) d r} d s
$$

Now from

$$
u(t)=v(t)+C(t) \leq w(t)+C(t)
$$

we deduce

$$
u(t) \leq C(t)+\int_{a}^{t} g(s) C(s) e^{\int_{s}^{t} g(r) d r} d s
$$

(b) Now suppose $C(t)$ is increasing. Then

$$
\int_{a}^{t} g(s) C(s) e^{\int_{s}^{t} g(r) d r} d s \leq C(t) \int_{a}^{t} g(s) e^{\int_{s}^{t} g(r) d r} d s
$$

Note that

$$
\begin{gathered}
\int_{a}^{t} g(s) e^{\int_{s}^{t} g(r) d r} d s=-\int_{a}^{t} \frac{d}{d s}\left(e^{\int_{s}^{t} g(r) d r}\right) d s= \\
=-\left.e^{\int_{s}^{t} g(r) d r}\right|_{a} ^{t}=e^{\int_{a}^{t} g(r) d r}-1
\end{gathered}
$$

From part (a) we now obtain

$$
\begin{gathered}
u(t) \leq C(t)+\int_{a}^{t} g(s) C(s) e^{\int_{s}^{t} g(r) d r} d s \leq \\
\leq C(t)\left(1+\int_{a}^{t} g(s) e^{\int_{s}^{t} g(r) d r} d s\right)=C(t) e^{\int_{a}^{t} g(r) d r}
\end{gathered}
$$

Problem 4: Suppose $y(t)$ is a solution of $y^{\prime}(t)=f(y(t))$, defined for $t \in[0, T)$ for some $0<T<\infty$.
(a) Suppose $|f(x)| \leq M$ for all $x \in \mathbb{R}$. Then

$$
\left|y^{\prime}(t)\right|=|f(y(t))| \leq M
$$

and therefore

$$
|y(t)| \leq|y(0)|+M t \leq|y(0)|+M T .
$$

Therefore $y(t)$ remains bounded when t stays bounded.
(b) Now suppose f grows at most linearly. That is, $|f(x)| \leq C|x|+$ K for all $x \in \mathbb{R}$. Then

$$
\begin{aligned}
& |y(t)-y(0)|=\left|\int_{0}^{t} y^{\prime}(s)\right|=\left|\int_{0}^{t} f(y(s))\right| \leq \\
& \int_{0}^{t}(K+C|y(s)|) d s \leq K T+C \int_{0}^{t}|y(s)| d s
\end{aligned}
$$

Consequently,

$$
|y(t)| \leq|y(0)|+K T+C \int_{0}^{t}|y(s)| d s
$$

for all $t \in[0, T)$. Applying Gronwall's inequality to $|y(t)|$ gives

$$
|y(t)| \leq(|y(0)|+K T) e^{C t} \leq(|y(0)|+K T) e^{C T}
$$

Again, $y(t)$ remains bounded when t stays bounded.

Problem 5:

STEP 1: Main Observation: By integrating the ODE, it is equivalent to

$$
\begin{aligned}
\int_{0}^{t} y^{\prime}(s) d s & =\int_{0}^{t} f(y(s)) d s \\
y(t)-y_{0} & =\int_{0}^{t} f(y(s)) d s \\
y(t) & =y_{0}+\int_{0}^{t} f(y(s)) d s
\end{aligned}
$$

STEP 2: Let $\tau>0$ TBA
Since f is continuous, it is bounded around y_{0} : There is some $r>0$ and $C>0$ such that $|f(x)| \leq C$ for all $x \in\left[y_{0}-r, y_{0}+r\right]$.

Let X be the space of continuous functions $y:[-\tau, \tau] \rightarrow\left[y_{0}-r, y_{0}+r\right]$ with the sup norm.

Given $y \in X$, define $\Phi(y) \in X$ (to be shown) by

$$
\Phi(y)(t)=y_{0}+\int_{0}^{t} f(y(s)) d s
$$

We're done once we show that Φ has a fixed point y, because then $\Phi(y)=y$ and we get

$$
y(t)=y_{0}+\int_{0}^{t} f(y(s)) d s \checkmark
$$

STEP 3: Proof that Φ is a contraction

First show that $\Phi: X \rightarrow X$: Notice that if y is continuous, then $\int_{0}^{t} f(y)$ is continuous (in fact differentiable) and hence $\Phi(y)(t)$ is continuous. Moreover

$$
\left|\Phi(y)(t)-y_{0}\right|=\left|\int_{0}^{t} f(y(s)) d s\right| \leq \int_{0}^{t}|f(y)| d s \leq \int_{0}^{t} C d s=C t \leq C \tau \leq r
$$

Provided you choose τ such that $\tau C \leq r$
Hence $\Phi(y) \in\left[y_{0}-r, y_{0}+r\right]$ and so $\Phi(y) \in X$.

Moreover, Φ is a contraction because

$$
\begin{aligned}
d(\Phi(y), \Phi(z)) & =\sup _{t}\left|y_{0}+\int_{0}^{t} f(y(s)) d s-\left(y_{0}+\int_{0}^{t} f(z(s)) d s\right)\right| \\
& \leq \sup _{t}\left|\int_{0}^{t} f(y(s))-f(z(s)) d s\right| \\
& \leq \sup _{t} \int_{0}^{t}|f(y(s))-f(z(s))| d s \\
& \left.\leq \int_{0}^{\tau}|f(y(s))-f(z(s))| d s \text { (the integral is increasing in } t\right) \\
& \leq \int_{0}^{\tau}\left(\sup _{s}|f(y(s))-f(z(s))|\right) d s \\
& =\left(\sup _{s}|f(y(s))-f(z(s))|\right) \int_{0}^{\tau} 1 \\
& \leq L \sup _{s}|y(s)-z(s)| \tau \\
& =L \tau d(y, z)
\end{aligned}
$$

This becomes a contraction provided we choose τ so that $L \tau<1$

STEP 4: Uniqueness

Any other solution $z(t)$ is also a fixed point of Φ, that is $\Phi(z)=z$. Since a contraction has a unique fixed point, we have $z=y$. This is what local uniqueness means.

