
HOMEWORK 5 − SOLUTIONS

Problem 1: To prove the claim we use Arzela-Ascoli theorem. To use
the theorem we need to check equicontinuity and uniform boundedness.

Equicontinuity immediately follows from the uniform boundedness of
(f ′

n):
|f ′

n| ≤ M ⇒ |fn(x)− fn(y)| ≤ M |x− y|
for all n and x ∈ [a, b].

Uniform boundedness:
Since |fn(x0)| ≤ C for all n and some 0 ≤ C < ∞, then

|fn(x)| ≤ |fn(x0)|+ |
∫ x

x0

f ′
n(s)ds| ≤ C +M |x− x0| ≤ C +M(b− a)

for all n ∈ N and x ∈ [a, b].
Problem 2: Let f : R → R be Lipschitz with Lipschitz constant L.
Suppose y1, y2 : [t1, t2] → R are both solutions of

y′ = f(y)

with
y1(0) = y2(0) = y0,

where −∞ < t1 < 0 < t2 < ∞.
Let z(t) = (y1(t)− y2(t))

2. Then

|z′(t)| = |2(y1(t)− y2(t))(y
′
1(t)− y′2(t))| =

= 2|y1(t)− y2(t)||f(y1(t))− f(y2(t))| ≤ [f Lipschitz] ≤
2L|y1(t)− y2(t)|2 = 2Lz(t).
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Then for t ∈ [0, t2] it holds that

z(t) =

∫ t

0

z′(s)ds ≤
∫ t

0

2Lz(s)ds.

Gronwall’s inequality with C = 0 and g(t) = 2L gives

z(t) = 0 for all t ∈ [0, t2].

Similarly, applying Gronwall’s inequality to w(t) = z(−t) for t ∈
[0,−t1] gives

z(t) = 0 for all t ∈ [t1, 0].

From the definition of z(t) = (y1(t)− y2(t))
2 we get

y1(t) = y2(t)

for all t ∈ [t1, t2].

Problem 3: Here g(t) ≥ 0, u(t), C(t) are continuous functions on
[a, b].

(a) Suppose u(t) satisfies

u(t) ≤ C(t) +

∫ t

a

g(s)u(s)ds.

Introduce v(t) = u(t)−C(t). Then in terms of v the inequality
above reads as

v(t) ≤
∫ t

a

g(s)(v(s) + C(s))ds.

Let

w(t) =

∫ t

a

g(s)(v(s) + C(s))ds.
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Then w(t) is continuously differentiable on [a, b] with

w′(t) = g(t)(v(t) + C(t)) ≤ g(t)w(t) + g(t)C(t).

Equivalently,

w′(t)− g(t)w(t) ≤ g(t)C(t).

Multiply the inequality by the so-called integrating factor e−
∫ t

a
g(s)ds

to get

w′(t)e−
∫ t

a
g(s)ds − g(t)e−

∫ t

a
g(s)dsw(t) ≤ g(t)C(t)e−

∫ t

a
g(s)ds.

The left side of the inequality is now a total derivative:

d

dt

(
w(t)e−

∫ t

a
g(s)ds

)
≤ g(t)C(t)e−

∫ t

a
g(s)ds.

Integrate the above inequality over [a, t] to get (note that w(a) =
0)

w(t)e−
∫ t

a
g(s)ds ≤

∫ t

a

g(s)C(s)e−
∫ s

a
g(r)drds

Multiplying the above inequality by e
∫ t

a
g(s)ds and using

∫ t

a −
∫ s

a =∫ t

s gives

w(t) ≤
∫ t

a

g(s)C(s)e
∫ t

s
g(r)drds.

Now from

u(t) = v(t) + C(t) ≤ w(t) + C(t)

we deduce

u(t) ≤ C(t) +

∫ t

a

g(s)C(s)e
∫ t

s
g(r)drds.
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(b) Now suppose C(t) is increasing. Then∫ t

a

g(s)C(s)e
∫ t

s
g(r)drds ≤ C(t)

∫ t

a

g(s)e
∫ t

s
g(r)drds.

Note that∫ t

a

g(s)e
∫ t

s
g(r)drds = −

∫ t

a

d

ds

(
e
∫ t

s
g(r)dr

)
ds =

= −e
∫ t

s
g(r)dr|ta = e

∫ t

a
g(r)dr − 1.

From part (a) we now obtain

u(t) ≤ C(t) +

∫ t

a

g(s)C(s)e
∫ t

s
g(r)drds ≤

≤ C(t)(1 +

∫ t

a

g(s)e
∫ t

s
g(r)drds) = C(t)e

∫ t

a
g(r)dr.

Problem 4: Suppose y(t) is a solution of y′(t) = f(y(t)), defined for
t ∈ [0, T ) for some 0 < T < ∞.

(a) Suppose |f(x)| ≤ M for all x ∈ R. Then

|y′(t)| = |f(y(t))| ≤ M

and therefore

|y(t)| ≤ |y(0)|+Mt ≤ |y(0)|+MT.

Therefore y(t) remains bounded when t stays bounded.

(b) Now suppose f grows at most linearly. That is, |f(x)| ≤ C|x|+
K for all x ∈ R. Then

|y(t)− y(0)| = |
∫ t

0

y′(s)| = |
∫ t

0

f(y(s))| ≤∫ t

0

(K + C|y(s)|)ds ≤ KT + C

∫ t

0

|y(s)|ds.
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Consequently,

|y(t)| ≤ |y(0)|+KT + C

∫ t

0

|y(s)|ds

for all t ∈ [0, T ). Applying Gronwall’s inequality to |y(t)| gives

|y(t)| ≤ (|y(0)|+KT )eCt ≤ (|y(0)|+KT )eCT .

Again, y(t) remains bounded when t stays bounded.

Problem 5:

STEP 1: Main Observation: By integrating the ODE, it is equiv-
alent to ∫ t

0

y′(s)ds =

∫ t

0

f(y(s))ds

y(t)− y0 =

∫ t

0

f(y(s))ds

y(t) =y0 +

∫ t

0

f(y(s))ds

STEP 2: Let τ > 0 TBA

Since f is continuous, it is bounded around y0: There is some r > 0
and C > 0 such that |f(x)| ≤ C for all x ∈ [y0 − r, y0 + r].

Let X be the space of continuous functions y : [−τ, τ ] → [y0− r, y0+ r]
with the sup norm.

Given y ∈ X, define Φ(y) ∈ X (to be shown) by

Φ(y)(t) = y0 +

∫ t

0

f(y(s))ds
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We’re done once we show that Φ has a fixed point y, because then
Φ(y) = y and we get

y(t) = y0 +

∫ t

0

f(y(s))ds✓

STEP 3: Proof that Φ is a contraction

First show that Φ : X → X: Notice that if y is continuous, then
∫ t

0 f(y)
is continuous (in fact differentiable) and hence Φ(y)(t) is continuous.
Moreover

|Φ(y)(t)− y0| =
∣∣∣∣∫ t

0

f(y(s))ds

∣∣∣∣ ≤ ∫ t

0

|f(y)| ds ≤
∫ t

0

Cds = Ct ≤ Cτ ≤ r

Provided you choose τ such that τC ≤ r

Hence Φ(y) ∈ [y0 − r, y0 + r] and so Φ(y) ∈ X.
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Moreover, Φ is a contraction because

d(Φ(y),Φ(z)) = sup
t

∣∣∣∣y0 + ∫ t

0

f(y(s))ds−
(
y0 +

∫ t

0

f(z(s))ds

)∣∣∣∣
≤ sup

t

∣∣∣∣∫ t

0

f(y(s))− f(z(s))ds

∣∣∣∣
≤ sup

t

∫ t

0

|f(y(s))− f(z(s))| ds

≤
∫ τ

0

|f(y(s))− f(z(s))| ds (the integral is increasing in t)

≤
∫ τ

0

(
sup
s

|f(y(s))− f(z(s))|
)
ds

=

(
sup
s

|f(y(s))− f(z(s))|
)∫ τ

0

1

≤L sup
s

|y(s)− z(s)| τ

=Lτd(y, z)

This becomes a contraction provided we choose τ so that Lτ < 1

STEP 4: Uniqueness

Any other solution z(t) is also a fixed point of Φ, that is Φ(z) = z.
Since a contraction has a unique fixed point, we have z = y. This is
what local uniqueness means. □


