ANALYSIS - HOMEWORK 5

Problem 1: Let $f_{n}[a, b] \rightarrow \mathbb{R}$ be a sequence of smooth functions such that $\left(f_{n}^{\prime}\right)$ is bounded. Moreover, suppose for some $x_{0},\left(f_{n}\left(x_{0}\right)\right)$ is a bounded sequence. Show that $\left(f_{n}\right)$ has a subsequence which converges uniformly on $[a, b]$

Problem 2: Use Grönwall's inequality to directly show that if y_{1} and y_{2} solve the ODE

$$
\left\{\begin{aligned}
y^{\prime} & =f(y) \\
y(0) & =y_{0}
\end{aligned}\right.
$$

Where f is Lipschitz, then $y_{1}=y_{2}$
Hint: Consider $z(t)=\left(y_{1}(t)-y_{2}(t)\right)^{2}$
Problem 3: Here $g(t) \geq 0, u(t)$ and $C(t)$ are cont functions on $[a, b]$
(a) Prove the following generalization of Grönwall's inequality: If $u(t)$ satisfies

$$
\begin{gathered}
u(t) \leq C(t)+\int_{a}^{t} g(s) u(s) d s \\
\text { Then } u(t) \leq C(t)+\int_{a}^{t} C(s) g(s) e^{\int_{s}^{t} g(r) d r} d s
\end{gathered}
$$

(b) If in addition $C(t)$ is increasing, show that

$$
u(t) \leq C(t) e^{\int_{a}^{t} g(s) d s}
$$

Problem 4: Consider the ODE $y^{\prime}=f(y)$ where $|f(x)| \leq M$
(a) Show that no solution of the ODE escapes to infinity in finite time
(b) Show the same thing is true if $|f(x)| \leq C|x|+K$

Recall the Banach Fixed Point Theorem that we proved last time

Banach Fixed Point Theorem:

If (X, d) is complete and $f: X \rightarrow X$ is a contraction, then f has a unique fixed point p

Problem 5: (More challenging)

Use the Banach Fixed Point Theorem to show that if f is Lipschitz and $y_{0} \in \mathbb{R}$ then for some small $\tau>0$ there is a sol $y:[-\tau, \tau] \rightarrow \mathbb{R}$ of

$$
\left\{\begin{aligned}
y^{\prime} & =f(y) \\
y(0) & =y_{0}
\end{aligned}\right.
$$

Hint: First, since f is continuous, there is $r>0$ and $C>0$ such that $|f(x)| \leq C$ on $\left[y_{0}-r, y_{0}+r\right]$. Now let X be the space of continuous functions $y:[-\tau, \tau] \rightarrow\left[y_{0}-r, y_{0}+r\right]$. And given $y \in X$, let

$$
\Phi(y)(t)=y_{0}+\int_{0}^{t} f(y(s)) d s
$$

Show that $\Phi: X \rightarrow X$ and that Φ is a contraction

