HOMEWORK 6 - SOLUTIONS

Problem 1: Let $p_{n}(x)=x^{n}$, where $n \in \mathbb{N}$. Then $T\left(p_{n}\right)=p_{n}^{\prime}=n x^{n-1}$. Note that

$$
\left\|p_{n}\right\|=\sup _{x \in[0,1]} x^{n}=1
$$

and

$$
\left\|T\left(p_{n}\right)\right\|=\sup _{x \in[0,1]} n x^{n-1}=n
$$

Therefore

$$
\sup _{\|p\|=1} \frac{\|T p\|}{\|p\|}=\infty .
$$

That is, the operator T is unbounded on $(P,\|\cdot\|)$. Equivalently, there does not exist C such that

$$
\|T(p)\| \leq C\|p\|
$$

for all $p \in P$.
Problem 2: Finite-dimensionality is crucial here!
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n} and let $x \in \mathbb{R}^{n}$ be given. Then there are c_{1}, \ldots, c_{n} such that

$$
x=c_{1} e_{1}+\cdots+c_{n} e_{n}
$$

$$
\text { Then }|A x|=\left|A\left(\sum_{i=1}^{n} c_{i} e_{i}\right)\right| \stackrel{\operatorname{LIN}}{=}\left|\sum_{i=1}^{n} c_{i}\left(A e_{i}\right)\right| \leq \sum_{i=1}^{n}\left|c_{i}\right|\left|A e_{i}\right|
$$

However, for each i, we have

$$
\begin{gathered}
\left|c_{i}\right|=\sqrt{\left(c_{i}\right)^{2}} \leq \sqrt{\left(c_{1}\right)^{2}+\cdots+\left(c_{n}\right)^{2}}=|x| \\
\text { Hence }|A x| \leq \sum_{i=1}^{n} \underbrace{\left|c_{i}\right|}_{\leq|x|}\left|A e_{i}\right| \leq\left(\sum_{i=1}^{n}\left|A e_{i}\right|\right)|x|=C|x|
\end{gathered}
$$

Where $C=: \sum_{i=1}^{n}\left|A e_{i}\right|$ (doesn't depend on x).
From this it follows that for all $x, \frac{|A x|}{|x|} \leq C<\infty$
Problem 3: (a) follows because for all x
$|(L+S) x|=|L x+S x| \leq|L x|+|S x| \leq\|L\||x|+\|S\||x|=(\|L\|+\|S\|)|x|$
And (b) follows similarly because for all x

$$
|(L S) x|=|L(S x)| \leq\|L\||S x| \leq\|L\|\|S\||x|
$$

Problem 4: If

$$
A\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{2}\right)
$$

Then can show that the operator $\|A\|=2$ but

$$
[A]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Problem 5: STEP 1: Suppose f has two derivatives A and B at x
Then for all $y \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
& f(x+y)=f(x)+A y+r(y) \\
& f(x+y)=f(x)+B y+s(y)
\end{aligned}
$$

Subtracting the second equation from the first, we get

$$
A y-B y=s(y)-r(y)
$$

In particular, this implies that

$$
\lim _{y \rightarrow 0} \frac{|A y-B y|}{|y|}=\lim _{y \rightarrow 0} \frac{|s(y)-r(y)|}{|y|} \leq \lim _{y \rightarrow 0} \frac{|s(y)|+|r(y)|}{|y|}=0
$$

STEP 2: Notice that for any $t \in \mathbb{R}, \lim _{t \rightarrow 0} t y=0$ and so by the above

$$
0=\lim _{t \rightarrow 0} \frac{|A(t y)-B(t y)|}{|t y|} \stackrel{\text { LIN }}{=} \lim _{t \rightarrow 0} \frac{|t||A y-B y|}{|t||y|}=\lim _{t \rightarrow 0} \underbrace{\frac{|A y-B y|}{|y|}}_{\text {Constant }}=\frac{|A y-B y|}{|y|}
$$

So in fact for every y we have

$$
\frac{|A y-B y|}{|y|}=0 \Rightarrow|A y-B y|=0 \Rightarrow A y=B y \Rightarrow A=B
$$

Problem 6: STEP 1: Fix x and let $A=f^{\prime}(x)$ and $B=g^{\prime}(f(x))$. Using the definition of F then the definition of f^{\prime} and of g^{\prime} we get

$$
\begin{aligned}
F(x+h) & =g(f(x+h))=g\left(f(x)+A h+r_{f}(h)\right) \\
& =g(f(x))+B\left(A h+r_{f}(h)\right)+r_{g}\left(A h+r_{f}(h)\right) \\
F(x+h) & =F(x)+B A h+B r_{f}(h)+r_{g}\left(A h+r_{f}(h)\right)
\end{aligned}
$$

If we show that the remainder terms are sublinear, then we would be done because then

$$
F^{\prime}(x)=B A=g^{\prime}(f(x)) f^{\prime}(x)
$$

STEP 2: Remainder Terms

$$
\frac{\left|B r_{f}(h)\right|}{|h|} \leq\|B\|\left(\frac{\left|r_{f}(h)\right|}{|h|}\right) \xrightarrow{h \rightarrow 0} 0
$$

For the second term, first notice that

$$
\left|A h+r_{f}(h)\right| \leq\|A\||h|+\left|r_{f}(h)\right| \xrightarrow{h \rightarrow 0} 0
$$

Therefore, by definition of r_{g} we have

$$
\frac{\left|r_{g}\left(A h+r_{f}(h)\right)\right|}{|h|}=\frac{\left|r_{g}\left(A h+r_{f}(h)\right)\right|}{\left|A h+r_{f}(h)\right|} \times \frac{\left|A h+r_{f}(h)\right|}{|h|} \xrightarrow{h \rightarrow 0} 0
$$

This follows from the definition of r_{g} and because its input goes to 0 , while the second term is bounded.

Technical Note: It is possible that $A h+r_{f}(h)=0$, but this can be dealt with by redefining $r_{g}(0)=0$ if necessary.

Problem 7: Fix j, then since f is differentiable at x, we have

$$
f\left(x+t e_{j}\right)-f(x)=f^{\prime}(x)\left(t e_{j}\right)+r\left(t e_{j}\right)
$$

Where $\lim _{t \rightarrow 0} \frac{\left|r\left(t e_{j}\right)\right|}{t e_{j}}=\lim _{t \rightarrow 0} \frac{\left|r\left(t e_{j}\right)\right|}{|t|}=0$
Dividing both sides by t and using linearity of $f^{\prime}(x)$ we get

$$
\begin{aligned}
& \qquad \lim _{t \rightarrow 0} \frac{f\left(x+t e_{j}\right)-f(x)}{t}=f^{\prime}(x)\left(e_{j}\right) \\
& \text { The left hand side is by definition }\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{j}} \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{j}}
\end{array}\right] \text { and right-hand-side is by def- }
\end{aligned}
$$ inition the j-th column of $\left[f^{\prime}(x)\right]$, so both columns are equal. Since

this is true for all j, the two matrices are equal.
Problem 8: For (a) we have

$$
f(2 \pi)-f(0)=(1,0)-(1,0)=(0,0) \neq f^{\prime}(c)(2 \pi-0) \text { for any } c
$$

Since $f^{\prime}(c)=(-\cos (c), \sin (c)) \neq(0,0)$
Proof of (b)
STEP 1: Fix a and b and define the segment from a to b :

$$
\gamma(t)=(1-t) a+t b \quad(0 \leq t \leq 1)
$$

Let $g(t)=f(\gamma(t))$ (Collects f along the segment)
Then $g^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)=f^{\prime}(\gamma(t))(b-a) \quad$ (Definition of $\left.\gamma^{\prime}\right)$
Hence $\left\|g^{\prime}(t)\right\| \leq\left\|f^{\prime}(\gamma(t))(b-a)\right\|=\left\|f^{\prime}(\gamma(t))\right\||b-a| \leq M|b-a|$
Notice the above is valid for all t.
Claim: There is some c with $|g(1)-g(0)| \leq\left\|g^{\prime}(c)\right\|$
Then we would be done because
$|f(b)-f(a)|=|f(\gamma(1))-f(\gamma(0))|=|g(1)-g(0)| \stackrel{\text { Claim }}{\leq}\left\|g^{\prime}(c)\right\| \leq M|b-a| \checkmark$
STEP 2: Proof of Claim:
Let $\phi(t)=(g(1)-g(0)) \cdot g(t) \quad$ (Scalar function)
Then by the single-variable MVT applied to ϕ there is c in $(0,1)$ with

$$
\phi(1)-\phi(0)=\phi^{\prime}(c) \stackrel{\text { DEF }}{=}(g(1)-g(0)) \cdot g^{\prime}(c)
$$

$$
\text { But also } \phi(1)-\phi(0) \stackrel{\text { DEF }}{=}(g(1)-g(0)) \cdot g(1)-(g(1)-g(0)) \cdot g(0), ~ \begin{aligned}
& \\
&=(g(1)-g(0)) \cdot(g(1)-g(0)) \\
&=|g(1)-g(0)|^{2}
\end{aligned}
$$

Hence $|g(1)-g(0)|^{2}=\phi(1)-\phi(0)=(g(1)-g(0)) \cdot g^{\prime}(c) \stackrel{\text { C-S }}{\leq}|g(1)-g(0)|\left\|g^{\prime}(c)\right\|$
Dividing both sides by $|g(1)-g(0)|$ we get $|g(1)-g(0)| \leq\left\|g^{\prime}(c)\right\|$ If $f^{\prime}(x)=0$ then setting $M=0$ in the above we get $f(b)-f(a)=0$ and so f is constant since a and b are arbitrary.

Problem 9: By the definition of differentiability,

$$
\begin{aligned}
f(x+h) & =f(x)+f^{\prime}(x) h+r_{f}(h), \\
g(x+h) & =g(x)+g^{\prime}(x) h+r_{g}(h),
\end{aligned}
$$

where

$$
\frac{r_{f}(h)}{h} \rightarrow 0, \frac{r_{g}(h)}{h} \rightarrow 0 \quad \text { as } h \rightarrow 0 .
$$

Then

$$
\begin{gathered}
f(x+h) g(x+h)=\left(f(x)+f^{\prime}(x) h+r_{f}(h)\right)\left(g(x)+g^{\prime}(x) h+r_{g}(h)\right)= \\
=f(x) g(x)+\left(f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right) h+r_{f g}(h),
\end{gathered}
$$

where

$$
\begin{gathered}
r_{f g}(h):=g(x) r_{f}(h)+f^{\prime}(x) g^{\prime}(x) h^{2}+g^{\prime}(x) h r_{f}(h)+f(x) r_{g}(h)+ \\
+f^{\prime}(x) h r_{g}(h)+r_{f}(h) r_{g}(h) .
\end{gathered}
$$

Clearly,

$$
\frac{r_{f g}(h)}{h} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

Therefore $f g$ is differentiable at x with

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Problem 10: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}} \quad \text { for }(x, y) \neq(0,0)
$$

Then for $(x, y) \neq 0$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial f}{\partial y}(x, y)=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

From $f(h, 0)=f(0, h)=0$ for all $h \in \mathbb{R}$ it follows that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=0 .
\end{aligned}
$$

Note that

$$
f(h, h)=\frac{h^{2}}{h^{2}+h^{2}}=\frac{1}{2}
$$

for all $h \neq 0$. Therefore

$$
f(h, h)=\frac{1}{2} \nrightarrow 0=f(0,0) \quad \text { as } h \rightarrow 0
$$

and f is not continuous at $(x, y)=(0,0)$.
Problem 11: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and

$$
f(x, y)=\frac{x^{3}}{x^{2}+y^{2}} \quad \text { for }(x, y) \neq(0,0)
$$

Then for $(x, y) \neq 0$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=\frac{x^{2}\left(x^{2}+3 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial f}{\partial y}(x, y)=-\frac{2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{gathered}
0 \leq \frac{\partial f}{\partial x}(x, y)=\frac{x^{2}\left(x^{2}+3 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \leq \frac{\left(x^{2}+y^{2}\right)\left(3 x^{2}+3 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=3, \\
\left|\frac{\partial f}{\partial y}(x, y)\right|=\frac{|2 x y| x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \leq \frac{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=1 .
\end{gathered}
$$

From $f(x, 0)=x$ and $f(0, y)=0$ it follows that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=1, \\
& \frac{\partial f}{\partial y}(0,0)=0 .
\end{aligned}
$$

Therefore $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on \mathbb{R}^{2} and are bounded functions on \mathbb{R}^{2}.
If f is differentiable at $(x, y)=(0,0)$, then

$$
f(x, y)=f(0,0)+\left[\frac{\partial f}{\partial x}(0,0) x+\frac{\partial f}{\partial y}(0,0) y\right]+r(x, y)
$$

where

$$
\lim _{x, y \rightarrow 0} \frac{r(x, y)}{\sqrt{x^{2}+y^{2}}}=0
$$

Here we have

$$
r(x, y)=f(x, y)-x=-\frac{x y^{2}}{x^{2}+y^{2}}
$$

Take $x=y=h>0$, then

$$
\frac{r(h, h)}{\sqrt{2} h}=-\frac{h^{3}}{2 h^{2} \sqrt{2} h}=-2^{-\frac{3}{2}} \neq 0 .
$$

Therefore f is not differentiable at $(x, y)=(0,0)$.

