ANALYSIS - HOMEWORK 6

Problem 1: Let P be the set of polynomials on $[0,1]$ with the supremum norm

$$
\|p\|=\sup _{x \in[0,1]}|p(x)|
$$

And let $T: P \rightarrow P$ be defined by $T(p)=p^{\prime}$
Show that there is no C such that $\|T(p)\| \leq C\|p\|$. This is an example of an unbounded linear transformation.

Problem 2: Show that any linear transformation $L \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is bounded.

Problem 3: Show that if L and S are bounded then
(a) $\|L+S\| \leq\|L\|+\|S\|$
(b) $\|L S\| \leq\|L\|\|S\|$

Whenever those expressions are defined. Here $L S$ is the composition of L and S, that is $L S(x)=L(S(x))$

Problem 4: Give an example of a 2×2 matrix A such that the operator norm of $L(x)=A x$ is strictly less than the square root of the sum of squares of the entries of A

Problem 5: Show that the derivative of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is unique

Problem 6: Prove the Chain Rule: If f and g are differentiable and $F(x)=f(g(x))$ then

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Here the multiplication on the right hand side is composition (or matrix multiplication)

Problem 7: Show that if the Fréchet derivative of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ exists then the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ exist as well

Problem 8:

(a) Let $f(t)=(\cos (t), \sin (t))$. Show that there does NOT exist c in $[0,2 \pi]$ such that

$$
f(2 \pi)-f(0)=f^{\prime}(c)(2 \pi-0)
$$

So the Mean-Value Theorem is in general FALSE in higher dimensions.
(b) That said, show that in general, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable and there is $M \geq 0$ such that $\left\|f^{\prime}(x)\right\| \leq M$ for all x then for all a and b we have

$$
|f(b)-f(a)| \leq M|b-a|
$$

In particular, if $f^{\prime}(x)=0$ for all x then f is constant.
Problem 9: Use the definition of a derivative in \mathbb{R}^{n} to give a new proof of the product rule. That is, if $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable at x, then so if $f g$ and

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Problem 10: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at every point in \mathbb{R}^{2} but f is not continuous at $(0,0)$

Problem 11: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and

$$
f(x, y)=\frac{x^{3}}{x^{2}+y^{2}}
$$

Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are bounded functions in \mathbb{R}^{2} but f is not differentiable at $(0,0)$

