
HOMEWORK 7 − SOLUTIONS

Problem 1:

F (x, y, z, w) =

[
3x2z + 6wy2 − 2z + 1
xz − 4y

z − 3w − z

]
To use the Implicit Function Theorem, check detFx,y(1, 2,−1, 0) ̸= 0
(the derivative with respect to what you want to solve for is nonzero)

Fx,y =

[
6xz 12wy
z −4

z

]
Fx,y(1, 2,−1, 0) =

[
6(1)(−1) 12(0)(2)

−1 − 4
−1

]
=

[
−6 0
−1 4

]
detFx,y(1, 2,−1, 0) = −6(4)− 0 = −24 ̸= 0

Therefore the Implicit Function Theorem says that there is G such
that (x, y) = G(z, w) near (1, 2,−1, 0). Moreover

G′(−1, 0) = − (Fx,y(1, 2,−1, 0))−1 (Fz,w(1, 2,−1, 0))

Fz,w =

[
3x2 − 2 6y2

x+ 4y
z2 − 1 −3

]

Fz,w(1, 2,−1, 0) =

[
3(1)2 − 2 6(2)2

1 + 4(2)
(−1)2 − 1 −3

]
=

[
1 24
8 −3

]

G′(−1, 0) =−
[
−6 0
−1 4

]−1 [
1 24
8 −3

]
= −

(
− 1

24

)[
4 0
1 −6

] [
1 24
8 −3

]
=

1

24

[
4 96

−47 42

]
1
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Problem 2:

Consider F : R2n → Rn given by F (x, y) = y − f(x), where x, y ∈ Rn.

Let a ∈ Rn with det(f ′(a)) ̸= 0, and let (x0, y0) = (a, f(a)). Note

F (x0, y0) = F (a, f(a)) = f(a)− f(a) = 0.

Also,

Fx(x0, y0) = lim
t→0

F (x0 + t, y0)− F (x0, y0)

t
= lim

t→0

f(a)− f(a+ t)

t
,

so Fx(x0, y0) = −f ′(a) and thus det(Fx(x0, y0)) ̸= 0. Therefore, by the
implicit function theorem, there exists an open neighborhood W of
(a, f(a)), an open neighborhood V of f(a), and a function g : V → Rn

such that

{(x, y) ∈ W |F (x, y) = 0} = {(g(y), y)|y ∈ V }.

That is, for y ∈ V , we have F (g(y), y) = y − f(g(y)) = 0, so f ◦ g is
the identity on V . We may take the range U to be f−1(V ), which is
open (since f is continuous) and contains a.

It remains to show g′(f(a)) = (f ′(a))−1. The implicit function theorem
tells us

g′(f(a)) = g′(y0) = −(Fx(x0, y0))
−1Fy(x0, y0) = (f ′(a))−1,

since Fy(x0, y0) = 1.

Problem 3:

Let f(t) = t+ 2t2 sin(1/t) with f(0) = 0.
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Claim: f ′(0) = 1.

Since f(0) = 0, we have

f ′(0) = lim
t→0

f(t)

t
= lim

t→0
(1 + 2t sin(1/t)) = 1.

Claim: f ′ is bounded in (−1, 1).

We can compute directly

f ′(t) = 1 + 4t sin

(
1

t

)
− 2 cos

(
1

t

)
for t ̸= 0. Thus |f ′(t)| ≤ 7 for t ∈ (−1, 1).

Claim: f is not one-to-one in any neighborhood of 0.

Given a neighborhood U of 0, choose an integer m large enough that[
1

2mπ ,
1

(2m−1)π

]
⊂ U . Note Note that for k ∈ Z,

f ′
(

1

kπ

)
= 1 +

4

kπ
sin(kπ)− 2 cos(kπ) =

{
−1 if k is even

3 if k is odd
.

Therefore, f is decreasing at 1
2mπ and increasing at 1

(2m−1)π , and thus

(since f is continuous on Im) attains its minimum somewhere on the
interior of Im. In particular, f is not one-to-one on Im.

Problem 4:

Let f1(x, y) = ex cos y and f2(x, y) = ex sin y, and let f = (f1, f2).
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Claim: The Jacobian of f is not zero at any point of R2; nevertheless,
f is not one-to-one on R2.

The Jacobian of f at (x, y) is

detDf(x, y) = det

(
ex cos y −ex sin y
ex sin y ex cos y

)
= e2x cos2 y + e2x sin2 y = e2x,

which is nonzero everywhere.

On the other hand, f(0, 0) = f(0, 2π), so f is not one-to-one.

Claim: Let a = (0, π3 ) and b = f(a). Then

g(u, v) =
(
ln
√

u2 + v2, arctan
v

u

)
is continuous and satisfies f(g(y)) = y for all y in a neighborhood of b.

Lt us derive g. Let u = ex cos y, v = ex sin y. From u2 + v2 = e2x we
obtain x = ln

√
u2 + v2. From v/u = tan y we obtain y = arctan(v/u)

(for y near π
3 ). Then g as defined above is continuous and satisfies

f(g(u, v)) = (u, v), and g(b) = a.

Additionally, let us compute f ′(a) and g′(b) directly and verify directly
that f ′(g(u, v))g′(u, v) = I. We have

f ′(x, y) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
, g′(u, v) =

(
u

u2+v2
v

u2+v2
−v

u2+v2
u

u2+v2

)
.

Therefore (since b = f(a) = (12 ,
√
3
2 ))

f ′(a) =

(
1
2 −

√
3
2√

3
2

1
2

)
, g′(b) =

(
1
2

√
3
2

−
√
3
2

1
2

)
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Also,

f ′(g(u, v)) = f ′
(
ln
√

u2 + v2, arctan
u

v

)
=

(
u −v
v u

)
.

Multiplying matrices, f ′(g(u, v))g′(u, v) = I is verified.

Problem 5:

Suppose f : R → R is C1 and consider F : X → X where X = C([a, b])
with its sup norm, defined by

F (u)(t) = f(u(t)).

We will show F is differentiable and in fact the derivative is given by
DFu(h)(t) = Lu(h)(t) = f ′(u(t))h(t).

First we show Lu (as defined above) is a bounded linear operator.

It is clear that Lu is linear in its argument h. For boundedness, let
M = supt∈[a,b] |f ′(u(t))| (which exists because f ′ ◦ u is continuous and
[a, b] is compact), and note

∥Lu(h)∥ = sup
t∈[a,b]

|f ′(u(t))h(t)| ≤ M∥h∥.

Thus Lu is bounded.

Now we show that Lu is in fact the derivative DFu at u.

For fixed u, note u([a, b]) is compact, hence contained in some interval
[c, d]. Then the compact interval K = [c− 1, d + 1] contains u(t) and
u(t)+h for all t and all h with |h| < 1. Note f ′ is uniformly continuous
on K.
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Fix ϵ > 0. Notice that

∥F (u+h)−F (u)−Lu(h)∥ = sup
t∈[a,b]

|f(u(t)+h(t))−f(u(t))−f ′(u(t))h(t)|.

Since f ′ is uniformly continuous on K, we may choose δ < 1 so |f ′(x)−
f ′(y)| < ϵ when |x − y| < δ and x, y ∈ K. Now by the mean value
theorem, for any x and h, we have

f(x+ h)− f(x) = f ′(z)h

for some z between x and x + h. By the uniform continuity of f ′ on
K, for x ∈ u([a, b]),

|f(x+ h)− f(x)− f ′(x)h| = |f ′(z)− f ′(x)||h| < ϵ|h|

whenever |h| < δ.

Now setting x = u(t) and h = h(t), we find

|f(u(t) + h(t))− f(u(t))− f ′(u(t))h(t)| < ϵ∥h∥

whenever ∥h∥ < δ. Thus

∥F (u+ h)− F (u)− Lu(h)∥ < ϵ∥h∥

whenever ∥h∥ < δ. It follows

lim
h→0

∥F (u+ h)− F (u)− Lu(h)∥
∥h∥

= 0,

so Lu is the derivative of F at u.

Problem 6:
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Claim: Xν is a Banach space with respect to ∥ · ∥.

First we need to establish that ∥ · ∥ is actually a norm. It is clear that
∥cu∥ = |c|∥u∥ and that ∥u∥ ≥ 0 with equality if and only if u = 0. For
the triangle inequality,

∥u+v∥ = sup
t≥0

∥(u(t)+v(t))eνt| ≤ sup
t≥0

|u(t)eνt|+sup
t≥0

|v(t)eνt| = ∥u∥+∥v∥.

Now we need to show completeness. Suppose (un) ⊂ Xν is Cauchy.
Then (un) has at least a pointwise limit u (since (un(t)) is Cauchy in
R); we must show u is in fact the limit of (un) in Xν and that u ∈ Xν.
To this end, fix ϵ > 0, and choose N large enough that for m,n > N ,
we have ∥un − um∥ < ϵ/2. Now for any fixed t, there exists m > N
(depending on t) such that |u(t) − um(t)|eνt < ϵ/2, so for any n > N
(where N does not depend on t) we have

|u(t)eνt−un(t)e
νt| ≤ |u(t)eνt−um(t)e

νt|+|um(t)eνt−un(t)e
νt| < ϵ

2
+
ϵ

2
= ϵ.

Thus ∥u− un∥ → 0, which also implies (for large enough n)

∥u∥ ≤ ∥u− un∥+ ∥un∥ < ∞.

All that remains is to show that u is continuous. Again, fix ϵ > 0. Fix
t ≥ 0; we must find δ so that if |t − s| < δ then |u(t) − u(s)| < ϵ.
Choose n large enough that ∥u − un∥ < ϵ

6e
νt. Then choose δ small

enough that |un(s)− un(t)| < ϵ
2 , and also that e|ν|δ < 2. Then

|u(s)− u(t)| ≤ |u(s)− un(s)|+ |un(s)− un(t)|+ |un(t)− u(t)|

<
ϵ

2
+ (e−νs + e−νt)∥u− un∥

≤ ϵ

2
+ (1 + e|ν|δ)e−νt∥u− un∥

≤ ϵ

2
+ 3e−νt∥u− un∥

< ϵ.
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This establishes that u is continuous, so together with ∥u∥ < ∞, we
have u ∈ Xν.

Claim: Assume g : Rn → Rn satisfies g(0) = 0 and is Lipschitz
continuous with Lipschitz constant L. Then G : Xν → Xν defined by

[G(u)](t) = g(u(t))

is well-defined and Lipschitz continuous with Lipschitz constant L.

It is clear G(u) is a well-defined continuous function, so we must show
G(u) ∈ Xν. We have for any u ∈ Xν that

∥G(u)∥ = sup
t≥0

eνt|g(u(t))| ≤ sup
t≥0

eνtL|u(t)| = L∥u∥ < ∞

This establishes G(u) ∈ Xν. Furthermore, for u, v ∈ Xν,

∥G(u)−G(v)∥ = sup
t≥0

eνt|g(u(t))− g(v(t))|

≤ sup
t≥0

eνtL|u(t)− v(t)|

= L∥u− v∥.

Thus G is Lipschitz continuous with Lipschitz constant L. This is the
best Lipschitz constant we can get in general: if g(x) = Lx, then g has
best Lipschitz constant L and all the inequalities above are equalities,
so G has best Lipschitz constant L as well.

Claim: For ν ≥ 0, g ∈ C1 implies G ∈ C1. In fact, G has derivative
DGu(h)(t) = Ku(h)(t) = g′(u(t))h(t), much like in the previous prob-
lem. The argument proceeds very similarly.
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First note that every u ∈ Xν is bounded because ν ≥ 0. Thus for each
fixed u ∈ Xν, there exists C so |g′(u(t))| ≤ C for all t ≥ 0. Therefore

∥Ku(h)∥ = sup
t≥0

|g′(u(t))h(t)|eνt ≤ C∥h∥,

establishing that Ku is a bounded linear functional.

Next, since ν ≤ 0, u ∈ Xν implies u is bounded, that is there exists M
so |u(t)| ≤ M for all t ≥ 0. Then the compact set [−M − 1,M + 1]n

contains u(t) and u(t) + h for all t ≥ 0 and h with |h| < 1. Since g′ is
continuous, it is uniformly continuous on [−M − 1,M + 1]n.

Fix ϵ > 0. By the argument in the previous problem, the uniform
continuity of g′ on [−M − 1,M + 1]n implies there is δ so that |g(x+
h) − g(x) − g′(x)h| < ϵ|h| whenever |h| < δ and |x| ≤ M . Setting
x = u(t) and h = h(t), we find that for ∥h∥ < δ (which implies
|h(t)| < δ for all t ≥ 0, since ν ≥ 0) that

∥G(u+ h)−G(u)−Ku(h)∥
= sup

t≥0
eνt|g(u(t) + h(t))− g(u(t))− g′(u(t))h(t)|

≤ sup
t≥0

eνtϵ|h(t)|

= ϵ∥h∥.

We can now conclude that Ku is the derivative DGu of G at u.

All that remains is to show thatDG is a continuous function of u ∈ Xν.
Fix u ∈ Xν and let M = supt≥0 |u(t)|, which is finite. Note that

∥DGu −DGv∥ = sup
∥h∥≤1

sup
t≥0

|(g′(u(t))− g′(v(t)))h(t)|eνt.

Fix ϵ > 0. By uniform continuity of g′ on [−M−1,M+1]n, choose δ < 1
such that |g′(x)− g′(y)| < ϵ whenever |x− y| < δ and |x|, |y| ≤ M +1.
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If ∥u − v∥ < δ, then |u(t) − v(t)| < δ for all t (again since ν ≥ 0, so
|u(t)|, |v(t)| ≤ M + 1 for all t as well. Thus

∥DGu −DGv∥ ≤ sup
∥h∥≤1

sup
t≥0

ϵ|h(t)|eνt = ϵ sup
∥h∥≤1

∥h∥ = ϵ.

We conclude DG is a continuous function of u, so G is C1.


