HOMEWORK 7 — SOLUTIONS

Problem 1:

3222 + 6wy? — 22 + 1]

F(x,y,z,w) = [ vz 3y

To use the Implicit Function Theorem, check det F; ,(1,2,—1,0) # 0
(the derivative with respect to what you want to solve for is nonzero)

6xz 12w
Fx,y - [ 43/]

Foy(1.2,-1,0) [6(1)(;1) 1_2;(0)4(2)] _ [:? 2]

det Fy (1,2, —1,0) = —6(4) — 0 = —24 #£ 0

—=

Therefore the Implicit Function Theorem says that there is G such
that (z,y) = G(z,w) near (1,2, —1,0). Moreover

G'(=1,0) = — (Fpy(1,2,—1,0)) " (F.(1,2,—1,0))
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Problem 2:

Consider F' : R?*" — R" given by F(x,y) =y — f(x), where x,y € R".
Let a € R" with det(f'(a)) # 0, and let (xg,yo) = (a, f(a)). Note

F(zo,y0) = Fl(a, f(a)) = f(a) — f(a) = 0.
Also,

F, (0, yo) = lim F(zo +t,y0) — F(zo,90) _ . fla) = fla+ t)’

t—0 t t—0

so Fy(xo,y0) = —f'(a) and thus det(F,(xg,yo)) # 0. Therefore, by the
implicit function theorem, there exists an open neighborhood W of
(a, f(a)), an open neighborhood V' of f(a), and a function g : V" — R"
such that

{(z,y) e W[F(z,y) =0} = {(9(y),y)ly € V}.

That is, for y € V', we have F(g(y),y) =y — f(g9(y)) =0, so fogis
the identity on V. We may take the range U to be f~1(V), which is
open (since f is continuous) and contains a.

It remains to show ¢'(f(a)) = (f'(a))~!. The implicit function theorem
tells us

g (f(a) =g (o) = —(Fulzo,v0)) " Fy(mo, y0) = (f'(a)) ™",

since Fy(zo,v0) = 1.
Problem 3:

Let f(t) =t + 2t*sin(1/t) with f(0) = 0.
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Claim: f'(0) = 1.
Since f(0) = 0, we have

/(@)

/ R T JNY s . _
f'(0) —7151_{% , %gr&(l-l—%sm(l/t)) L.

Claim: f’ is bounded in (—1,1).

We can compute directly

f'(t) =1+ 4tsin (%) — 2cos (%)
for t 0. Thus |f'(t)| < 7 for t € (—1,1).

Claim: f is not one-to-one in any neighborhood of 0.

Given a neighborhood U of 0, choose an integer m large enough that
[ 1 ;] C U. Note Note that for k € Z,

2mm? (2m—1)w

—1 if k£ is even

1 4
=) =1+ — sin(kn) — 2cos(km) = .
/ (m) T Sinlkm) = 2eos(hm) = 0k odd

Therefore, f is decreasing at ﬁ and increasing at (2m+1)7r’ and thus

(since f is continuous on I,,) attains its minimum somewhere on the
interior of I,,,. In particular, f is not one-to-one on I,,.

Problem 4:

Let fi(x,y) = e"cosy and fo(x,y) = e*siny, and let f = (f1, f2).
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Claim: The Jacobian of f is not zero at any point of R?; nevertheless,
f is not one-to-one on R2.

The Jacobian of f at (x,y) is

e’ cosy —e’siny

_ T 2 . 2. %
deth(x’y)_det(exsiny e“”cosy>_€ cos”y + e“"sin”y = e,

which is nonzero everywhere.
On the other hand, f(0,0) = f(0,27), so f is not one-to-one.

Claim: Let a = (0,%) and b = f(a). Then

g(u,v) = (ln Vu? + v?, arctan ﬁ)
u

is continuous and satisfies f(g(y)) = y for all y in a neighborhood of b.

Lt us derive g. Let u = e cosy, v = e*siny. From u? + v? = €2* we
obtain x = Invu? + v2. From v/u = tany we obtain y = arctan(v/u)

(for y near ). Then g as defined above is continuous and satisfies

f(g(u7v)) - (u,v), and g(b) = Q.

Additionally, let us compute f’(a) and ¢'(b) directly and verify directly
that f'(g(u,v))g'(u,v) = I. We have

Pl = (Gt o)L ) = (2 )

T o T
e”smy € CosYy m W20l

Therefore (since b = f(a) = (3 V)

1 V3 1 V3
f@=<é f),¢@=<@3%>
2 2 T2 2
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Also,

Flatuo) = £ (Vo o anctan ) = (7).

v (% u

Multiplying matrices, f'(g(u,v))g'(u,v) = I is verified.
Problem 5:

Suppose f : R — R is C! and consider F' : X — X where X = C([a, ])
with its sup norm, defined by

F(u)(t) = f(u(t)).
We will show F' is differentiable and in fact the derivative is given by
DEF,(h)(t) = Lu(R)(t) = f'(u(t))h(t).

First we show L, (as defined above) is a bounded linear operator.

It is clear that L, is linear in its argument A. For boundedness, let
M = sup¢iqy |f/(u(t))] (which exists because f’owu is continuous and
[a, b] is compact), and note

[Lu(P)[l = sup [f'(u(®)h(t)] < M]|A].

t€(a,b]

Thus L, is bounded.
Now we show that L, is in fact the derivative DF;, at u.

For fixed u, note u([a, b]) is compact, hence contained in some interval
[c,d]. Then the compact interval K = [¢ — 1,d + 1] contains u(t) and
u(t)+h for all ¢ and all h with |h| < 1. Note f’ is uniformly continuous
on K.



6 HOMEWORK 7 — SOLUTIONS

Fix € > 0. Notice that

1 (uth) = F (u)=Lu(h)|| = sup |f(u(t)+h(t))—f(u(t)—f (u(t))h(t)].

te(a,b]

Since f’ is uniformly continuous on K, we may choose § < 1 so |f'(x)—
f'(y)| < e when |z —y| < § and z,y € K. Now by the mean value
theorem, for any x and h, we have

flx+h) = f(z) = f(2)h

for some z between x and x + h. By the uniform continuity of f’ on
K, for x € u([a, b)),

[f(z+h) = f(z) = f'(@)h] = |f'(z) = f(@)]|h] < €|h]
whenever |h| < 9.
Now setting = u(t) and h = h(t), we find
F(u(t) + (1) — F(u(0) ~ F @(E)A(D)] < el
whenever ||h|| < §. Thus
(1)~ Fu) — Lu(h)]| < ]
whenever ||h| < . It follows

P () = F(u) = L(0)|
h—0 Al

=0,

so L, is the derivative of F' at wu.

Problem 6:
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Claim: X, is a Banach space with respect to || - ||.

First we need to establish that || - || is actually a norm. It is clear that
|cu|| = |e|||w|| and that ||u| > 0 with equality if and only if u = 0. For
the triangle inequality,

[uto]| = sup || (u(t)+o(t))e”| < sup [u(t)e” [+sup [v(t)e”| = [Jul|+[[v].
t>0 t>0 t>0

Now we need to show completeness. Suppose (u,) C X, is Cauchy.
Then (u,) has at least a pointwise limit u (since (u,(t)) is Cauchy in
R); we must show u is in fact the limit of (u,) in X, and that u € X,,.
To this end, fix € > 0, and choose N large enough that for m,n > N,
we have ||u, — uy,|| < €/2. Now for any fized t, there exists m > N
(depending on t) such that |u(t) — u,(t)]e”" < €/2, so for any n > N
(where N does not depend on t) we have

[u(t)e —un(t)e”] < Ju(t)e” —un(t)e |+ lun (B —u, ()] < S5 =€

Thus ||u — u,|| — 0, which also implies (for large enough n)
lu|l < JJu — up|| + ||un|| < oo.

All that remains is to show that u is continuous. Again, fix € > 0. Fix
t > 0; we must find § so that if [t — s| < ¢ then |u(t) — u(s)| < e.
Choose n large enough that ||u — u,| < £e”*. Then choose ¢ small

enough that |u,(s) — u,(t)| < 5, and also that e < 2. Then
u(s) —u(t)] < [uls) — un(s)] + [un(s) = un(t)] + |un(t) — u(t)]

€
<5+ e u—u

2

€
<5 (e u—u|
< £ 136 |u — uy|

2

€.

A
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This establishes that u is continuous, so together with ||u| < oo, we
have u € X,.

Claim: Assume g : R” — R” satisfies ¢(0) = 0 and is Lipschitz
continuous with Lipschitz constant L. Then G : X, — X, defined by

is well-defined and Lipschitz continuous with Lipschitz constant L.

It is clear G(u) is a well-defined continuous function, so we must show
G(u) € X,. We have for any u € X, that

|G(u)]| = sup e”|g(u(t))] < supe”Llu(t)| = Lljul| < oo
t>0 >0

This establishes G(u) € X,,. Furthermore, for u,v € X,

1G(w) = G)]| = sup e”g(u(t)) — g(v(t))]

< supe”’Llu(t) — v(t)|
>0

= Lju =l

Thus G is Lipschitz continuous with Lipschitz constant L. This is the
best Lipschitz constant we can get in general: if g(x) = Lz, then g has
best Lipschitz constant L and all the inequalities above are equalities,
so G has best Lipschitz constant L as well.

Claim: For v > 0, g € C! implies G € C!. In fact, G has derivative
DG, (h)(t) = Ky(h)(t) = ¢'(u(t))h(t), much like in the previous prob-
lem. The argument proceeds very similarly.
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First note that every u € X, is bounded because v > 0. Thus for each
fixed u € X, there exists C' so |¢'(u(t))| < C for all ¢ > 0. Therefore

[ Ku(h)|| = Sup g (u(®)h(t)|e” < ClAl,
establishing that K, is a bounded linear functional.

Next, since v < 0, u € X, implies u is bounded, that is there exists M
so |u(t)] < M for all t > 0. Then the compact set [-M — 1, M + 1]"
contains u(t) and wu(t) + h for all ¢ > 0 and h with |h| < 1. Since ¢’ is
continuous, it is uniformly continuous on [-M — 1, M + 1]".

Fix € > 0. By the argument in the previous problem, the uniform
continuity of ¢’ on [-M — 1, M + 1]" implies there is ¢ so that |g(x +
h) — g(x) — ¢'(x)h| < €|h| whenever |h| < 0 and |z|] < M. Setting
r = u(t) and h = h(t), we find that for ||h|| < ¢ (which implies
|h(t)| < 6 for all ¢t > 0, since v > 0) that

G (u+h) = Gu) = Ku(h)]
= supe”[g(u(t) + h(t)) — g(u(t)) — g'(u(t) h(?)]

t>0

< sup e”’e| h(t)]
t>0

= e||All.
We can now conclude that K, is the derivative DG, of G at w.

All that remains is to show that DG is a continuous function of u € X,,.
Fix v € X, and let M = sup;- |u(t)|, which is finite. Note that

|DG, — DG,|| = S Sup [(g'(u(t) — g'(v(®)h(t)]e”.

Fix € > 0. By uniform continuity of ¢" on [-M —1, M +1]", choose § < 1
such that |¢'(z) — ¢'(y)| < € whenever |x —y| < § and |z|, |y| < M + 1.
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If Jlu—o| <6, then |u(t) —v(t)| < ¢ for all ¢ (again since v > 0, so
lu(t)], |v(t)| < M + 1 for all t as well. Thus

IDG, — DG,|| < sup supelh(t)|e” = ¢ sup [[h]] = e
|n]<1 t>0 Irl[<1

We conclude DG is a continuous function of u, so G is C'.



