HOMEWORK 7 - SOLUTIONS

Problem 1:

$$
F(x, y, z, w)=\left[\begin{array}{c}
3 x^{2} z+6 w y^{2}-2 z+1 \\
x z-\frac{4 y}{z}-3 w-z
\end{array}\right]
$$

To use the Implicit Function Theorem, check $\operatorname{det} F_{x, y}(1,2,-1,0) \neq 0$ (the derivative with respect to what you want to solve for is nonzero)

$$
\begin{gathered}
F_{x, y}=\left[\begin{array}{cc}
6 x z & 12 w y \\
z & -\frac{4}{z}
\end{array}\right] \\
F_{x, y}(1,2,-1,0)=\left[\begin{array}{cc}
6(1)(-1) & 12(0)(2) \\
-1 & -\frac{4}{-1}
\end{array}\right]=\left[\begin{array}{ll}
-6 & 0 \\
-1 & 4
\end{array}\right] \\
\operatorname{det} F_{x, y}(1,2,-1,0)=-6(4)-0=-24 \neq 0
\end{gathered}
$$

Therefore the Implicit Function Theorem says that there is G such that $(x, y)=G(z, w)$ near $(1,2,-1,0)$. Moreover

$$
\begin{gathered}
G^{\prime}(-1,0)=-\left(F_{x, y}(1,2,-1,0)\right)^{-1}\left(F_{z, w}(1,2,-1,0)\right) \\
F_{z, w}=\left[\begin{array}{cc}
3 x^{2}-2 & 6 y^{2} \\
x+\frac{4 y}{z^{2}}-1 & -3
\end{array}\right] \\
F_{z, w}(1,2,-1,0)=\left[\begin{array}{cc}
3(1)^{2}-2 & 6(2)^{2} \\
1+\frac{4(2)}{(-1)^{2}}-1 & -3
\end{array}\right]=\left[\begin{array}{cc}
1 & 24 \\
8 & -3
\end{array}\right] \\
G^{\prime}(-1,0)=-\left[\begin{array}{ll}
-6 & 0 \\
-1 & 4
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & 24 \\
8 & -3
\end{array}\right]=-\left(-\frac{1}{24}\right)\left[\begin{array}{cc}
4 & 0 \\
1 & -6
\end{array}\right]\left[\begin{array}{cc}
1 & 24 \\
8 & -3
\end{array}\right]=\frac{1}{24}\left[\begin{array}{cc}
4 & 96 \\
-47 & 42
\end{array}\right]
\end{gathered}
$$

Problem 2:

Consider $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ given by $F(x, y)=y-f(x)$, where $x, y \in \mathbb{R}^{n}$.
Let $a \in \mathbb{R}^{n}$ with $\operatorname{det}\left(f^{\prime}(a)\right) \neq 0$, and let $\left(x_{0}, y_{0}\right)=(a, f(a))$. Note

$$
F\left(x_{0}, y_{0}\right)=F(a, f(a))=f(a)-f(a)=0 .
$$

Also,

$$
F_{x}\left(x_{0}, y_{0}\right)=\lim _{t \rightarrow 0} \frac{F\left(x_{0}+t, y_{0}\right)-F\left(x_{0}, y_{0}\right)}{t}=\lim _{t \rightarrow 0} \frac{f(a)-f(a+t)}{t}
$$

so $F_{x}\left(x_{0}, y_{0}\right)=-f^{\prime}(a)$ and thus $\operatorname{det}\left(F_{x}\left(x_{0}, y_{0}\right)\right) \neq 0$. Therefore, by the implicit function theorem, there exists an open neighborhood W of $(a, f(a))$, an open neighborhood V of $f(a)$, and a function $g: V \rightarrow \mathbb{R}^{n}$ such that

$$
\{(x, y) \in W \mid F(x, y)=0\}=\{(g(y), y) \mid y \in V\}
$$

That is, for $y \in V$, we have $F(g(y), y)=y-f(g(y))=0$, so $f \circ g$ is the identity on V. We may take the range U to be $f^{-1}(V)$, which is open (since f is continuous) and contains a.

It remains to show $g^{\prime}(f(a))=\left(f^{\prime}(a)\right)^{-1}$. The implicit function theorem tells us

$$
g^{\prime}(f(a))=g^{\prime}\left(y_{0}\right)=-\left(F_{x}\left(x_{0}, y_{0}\right)\right)^{-1} F_{y}\left(x_{0}, y_{0}\right)=\left(f^{\prime}(a)\right)^{-1}
$$

since $F_{y}\left(x_{0}, y_{0}\right)=1$.

Problem 3:

Let $f(t)=t+2 t^{2} \sin (1 / t)$ with $f(0)=0$.

Claim: $f^{\prime}(0)=1$.
Since $f(0)=0$, we have

$$
f^{\prime}(0)=\lim _{t \rightarrow 0} \frac{f(t)}{t}=\lim _{t \rightarrow 0}(1+2 t \sin (1 / t))=1 .
$$

Claim: f^{\prime} is bounded in $(-1,1)$.
We can compute directly

$$
f^{\prime}(t)=1+4 t \sin \left(\frac{1}{t}\right)-2 \cos \left(\frac{1}{t}\right)
$$

for $t \neq 0$. Thus $\left|f^{\prime}(t)\right| \leq 7$ for $t \in(-1,1)$.
Claim: f is not one-to-one in any neighborhood of 0 .
Given a neighborhood U of 0 , choose an integer m large enough that $\left[\frac{1}{2 m \pi}, \frac{1}{(2 m-1) \pi}\right] \subset U$. Note Note that for $k \in \mathbb{Z}$,

$$
f^{\prime}\left(\frac{1}{k \pi}\right)=1+\frac{4}{k \pi} \sin (k \pi)-2 \cos (k \pi)=\left\{\begin{array}{ll}
-1 & \text { if } k \text { is even } \\
3 & \text { if } k \text { is odd }
\end{array} .\right.
$$

Therefore, f is decreasing at $\frac{1}{2 m \pi}$ and increasing at $\frac{1}{(2 m-1) \pi}$, and thus (since f is continuous on I_{m}) attains its minimum somewhere on the interior of I_{m}. In particular, f is not one-to-one on I_{m}.

Problem 4:

Let $f_{1}(x, y)=e^{x} \cos y$ and $f_{2}(x, y)=e^{x} \sin y$, and let $f=\left(f_{1}, f_{2}\right)$.

Claim: The Jacobian of f is not zero at any point of \mathbb{R}^{2}; nevertheless, f is not one-to-one on \mathbb{R}^{2}.

The Jacobian of f at (x, y) is

$$
\operatorname{det} D f(x, y)=\operatorname{det}\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)=e^{2 x} \cos ^{2} y+e^{2 x} \sin ^{2} y=e^{2 x}
$$

which is nonzero everywhere.
On the other hand, $f(0,0)=f(0,2 \pi)$, so f is not one-to-one.
Claim: Let $a=\left(0, \frac{\pi}{3}\right)$ and $b=f(a)$. Then

$$
g(u, v)=\left(\ln \sqrt{u^{2}+v^{2}}, \arctan \frac{v}{u}\right)
$$

is continuous and satisfies $f(g(y))=y$ for all y in a neighborhood of b.
Lt us derive g. Let $u=e^{x} \cos y, v=e^{x} \sin y$. From $u^{2}+v^{2}=e^{2 x}$ we obtain $x=\ln \sqrt{u^{2}+v^{2}}$. From $v / u=\tan y$ we obtain $y=\arctan (v / u)$ (for y near $\frac{\pi}{3}$). Then g as defined above is continuous and satisfies $f(g(u, v))=(u, v)$, and $g(b)=a$.

Additionally, let us compute $f^{\prime}(a)$ and $g^{\prime}(b)$ directly and verify directly that $f^{\prime}(g(u, v)) g^{\prime}(u, v)=I$. We have

$$
f^{\prime}(x, y)=\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right), \quad g^{\prime}(u, v)=\left(\begin{array}{cc}
\frac{u}{u^{2}+v^{2}} & \frac{v}{u^{2}+v^{2}} \\
u^{2}+v^{2} & \frac{u}{u^{2}+v^{2}}
\end{array}\right) .
$$

Therefore (since $\left.b=f(a)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right)$

$$
f^{\prime}(a)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right), \quad g^{\prime}(b)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

Also,

$$
f^{\prime}(g(u, v))=f^{\prime}\left(\ln \sqrt{u^{2}+v^{2}}, \arctan \frac{u}{v}\right)=\left(\begin{array}{cc}
u & -v \\
v & u
\end{array}\right) .
$$

Multiplying matrices, $f^{\prime}(g(u, v)) g^{\prime}(u, v)=I$ is verified.

Problem 5:

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and consider $F: X \rightarrow X$ where $X=C([a, b])$ with its sup norm, defined by

$$
F(u)(t)=f(u(t)) .
$$

We will show F is differentiable and in fact the derivative is given by $D F_{u}(h)(t)=L_{u}(h)(t)=f^{\prime}(u(t)) h(t)$.

First we show L_{u} (as defined above) is a bounded linear operator.
It is clear that L_{u} is linear in its argument h. For boundedness, let $M=\sup _{t \in[a, b]}\left|f^{\prime}(u(t))\right|$ (which exists because $f^{\prime} \circ u$ is continuous and [$a, b]$ is compact), and note

$$
\left\|L_{u}(h)\right\|=\sup _{t \in[a, b]}\left|f^{\prime}(u(t)) h(t)\right| \leq M\|h\| .
$$

Thus L_{u} is bounded.
Now we show that L_{u} is in fact the derivative $D F_{u}$ at u.
For fixed u, note $u([a, b])$ is compact, hence contained in some interval $[c, d]$. Then the compact interval $K=[c-1, d+1]$ contains $u(t)$ and $u(t)+h$ for all t and all h with $|h|<1$. Note f^{\prime} is uniformly continuous on K.

Fix $\epsilon>0$. Notice that

$$
\left\|F(u+h)-F(u)-L_{u}(h)\right\|=\sup _{t \in[a, b]}\left|f(u(t)+h(t))-f(u(t))-f^{\prime}(u(t)) h(t)\right| .
$$

Since f^{\prime} is uniformly continuous on K, we may choose $\delta<1$ so $\mid f^{\prime}(x)-$ $f^{\prime}(y) \mid<\epsilon$ when $|x-y|<\delta$ and $x, y \in K$. Now by the mean value theorem, for any x and h, we have

$$
f(x+h)-f(x)=f^{\prime}(z) h
$$

for some z between x and $x+h$. By the uniform continuity of f^{\prime} on K, for $x \in u([a, b])$,

$$
\left|f(x+h)-f(x)-f^{\prime}(x) h\right|=\left|f^{\prime}(z)-f^{\prime}(x)\right||h|<\epsilon|h|
$$

whenever $|h|<\delta$.
Now setting $x=u(t)$ and $h=h(t)$, we find

$$
\left|f(u(t)+h(t))-f(u(t))-f^{\prime}(u(t)) h(t)\right|<\epsilon\|h\|
$$

whenever $\|h\|<\delta$. Thus

$$
\left\|F(u+h)-F(u)-L_{u}(h)\right\|<\epsilon\|h\|
$$

whenever $\|h\|<\delta$. It follows

$$
\lim _{h \rightarrow 0} \frac{\left\|F(u+h)-F(u)-L_{u}(h)\right\|}{\|h\|}=0,
$$

so L_{u} is the derivative of F at u.

Problem 6:

Claim: X_{ν} is a Banach space with respect to $\|\cdot\|$.
First we need to establish that $\|\cdot\|$ is actually a norm. It is clear that $\|c u\|=|c|\|u\|$ and that $\|u\| \geq 0$ with equality if and only if $u=0$. For the triangle inequality,

$$
\|u+v\|=\sup _{t \geq 0}\left\|(u(t)+v(t)) e^{\nu t}\left|\leq \sup _{t \geq 0}\right| u(t) e^{\nu t}\left|+\sup _{t \geq 0}\right| v(t) e^{\nu t} \mid=\right\| u\|+\| v \| .
$$

Now we need to show completeness. Suppose $\left(u_{n}\right) \subset X_{\nu}$ is Cauchy. Then $\left(u_{n}\right)$ has at least a pointwise limit u (since $\left(u_{n}(t)\right)$ is Cauchy in \mathbb{R}); we must show u is in fact the limit of $\left(u_{n}\right)$ in X_{ν} and that $u \in X_{\nu}$. To this end, fix $\epsilon>0$, and choose N large enough that for $m, n>N$, we have $\left\|u_{n}-u_{m}\right\|<\epsilon / 2$. Now for any fixed t, there exists $m>N$ (depending on t) such that $\left|u(t)-u_{m}(t)\right| e^{\nu t}<\epsilon / 2$, so for any $n>N$ (where N does not depend on t) we have
$\left|u(t) e^{\nu t}-u_{n}(t) e^{\nu t}\right| \leq\left|u(t) e^{\nu t}-u_{m}(t) e^{\nu t}\right|+\left|u_{m}(t) e^{\nu t}-u_{n}(t) e^{\nu t}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
Thus $\left\|u-u_{n}\right\| \rightarrow 0$, which also implies (for large enough n)

$$
\|u\| \leq\left\|u-u_{n}\right\|+\left\|u_{n}\right\|<\infty
$$

All that remains is to show that u is continuous. Again, fix $\epsilon>0$. Fix $t \geq 0$; we must find δ so that if $|t-s|<\delta$ then $|u(t)-u(s)|<\epsilon$. Choose n large enough that $\left\|u-u_{n}\right\|<\frac{\epsilon}{6} e^{\nu t}$. Then choose δ small enough that $\left|u_{n}(s)-u_{n}(t)\right|<\frac{\epsilon}{2}$, and also that $e^{|\nu| \delta}<2$. Then

$$
\begin{aligned}
|u(s)-u(t)| & \leq\left|u(s)-u_{n}(s)\right|+\left|u_{n}(s)-u_{n}(t)\right|+\left|u_{n}(t)-u(t)\right| \\
& <\frac{\epsilon}{2}+\left(e^{-\nu s}+e^{-\nu t}\right)\left\|u-u_{n}\right\| \\
& \leq \frac{\epsilon}{2}+\left(1+e^{|\nu| \delta}\right) e^{-\nu t}\left\|u-u_{n}\right\| \\
& \leq \frac{\epsilon}{2}+3 e^{-\nu t}\left\|u-u_{n}\right\| \\
& <\epsilon .
\end{aligned}
$$

This establishes that u is continuous, so together with $\|u\|<\infty$, we have $u \in X_{\nu}$.

Claim: Assume $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $g(0)=0$ and is Lipschitz continuous with Lipschitz constant L. Then $G: X_{\nu} \rightarrow X_{\nu}$ defined by

$$
[G(u)](t)=g(u(t))
$$

is well-defined and Lipschitz continuous with Lipschitz constant L.
It is clear $G(u)$ is a well-defined continuous function, so we must show $G(u) \in X_{\nu}$. We have for any $u \in X_{\nu}$ that

$$
\|G(u)\|=\sup _{t \geq 0} e^{\nu t}|g(u(t))| \leq \sup _{t \geq 0} e^{\nu t} L|u(t)|=L\|u\|<\infty
$$

This establishes $G(u) \in X_{\nu}$. Furthermore, for $u, v \in X_{\nu}$,

$$
\begin{aligned}
\|G(u)-G(v)\| & =\sup _{t \geq 0} e^{\nu t}|g(u(t))-g(v(t))| \\
& \leq \sup _{t \geq 0} e^{\nu t} L|u(t)-v(t)| \\
& =L\|u-v\|
\end{aligned}
$$

Thus G is Lipschitz continuous with Lipschitz constant L. This is the best Lipschitz constant we can get in general: if $g(x)=L x$, then g has best Lipschitz constant L and all the inequalities above are equalities, so G has best Lipschitz constant L as well.

Claim: For $\nu \geq 0, g \in C^{1}$ implies $G \in C^{1}$. In fact, G has derivative $D G_{u}(h)(t)=K_{u}(h)(t)=g^{\prime}(u(t)) h(t)$, much like in the previous problem. The argument proceeds very similarly.

First note that every $u \in X_{\nu}$ is bounded because $\nu \geq 0$. Thus for each fixed $u \in X_{\nu}$, there exists C so $\left|g^{\prime}(u(t))\right| \leq C$ for all $t \geq 0$. Therefore

$$
\left\|K_{u}(h)\right\|=\sup _{t \geq 0}\left|g^{\prime}(u(t)) h(t)\right| e^{\nu t} \leq C\|h\|
$$

establishing that K_{u} is a bounded linear functional.
Next, since $\nu \leq 0, u \in X_{\nu}$ implies u is bounded, that is there exists M so $|u(t)| \leq M$ for all $t \geq 0$. Then the compact set $[-M-1, M+1]^{n}$ contains $u(t)$ and $u(t)+h$ for all $t \geq 0$ and h with $|h|<1$. Since g^{\prime} is continuous, it is uniformly continuous on $[-M-1, M+1]^{n}$.

Fix $\epsilon>0$. By the argument in the previous problem, the uniform continuity of g^{\prime} on $[-M-1, M+1]^{n}$ implies there is δ so that $\mid g(x+$ $h)-g(x)-g^{\prime}(x) h|<\epsilon| h \mid$ whenever $|h|<\delta$ and $|x| \leq M$. Setting $x=u(t)$ and $h=h(t)$, we find that for $\|h\|<\delta$ (which implies $|h(t)|<\delta$ for all $t \geq 0$, since $\nu \geq 0$) that

$$
\begin{aligned}
\| G(u+h)-G(u) & -K_{u}(h) \| \\
& =\sup _{t \geq 0} e^{\nu t}\left|g(u(t)+h(t))-g(u(t))-g^{\prime}(u(t)) h(t)\right| \\
& \leq \sup _{t \geq 0} e^{\nu t} \epsilon|h(t)| \\
& =\epsilon\|h\| .
\end{aligned}
$$

We can now conclude that K_{u} is the derivative $D G_{u}$ of G at u.
All that remains is to show that $D G$ is a continuous function of $u \in X_{\nu}$. Fix $u \in X_{\nu}$ and let $M=\sup _{t \geq 0}|u(t)|$, which is finite. Note that

$$
\left\|D G_{u}-D G_{v}\right\|=\sup _{\|h\| \leq 1} \sup _{t \geq 0}\left|\left(g^{\prime}(u(t))-g^{\prime}(v(t))\right) h(t)\right| e^{\nu t}
$$

Fix $\epsilon>0$. By uniform continuity of g^{\prime} on $[-M-1, M+1]^{n}$, choose $\delta<1$ such that $\left|g^{\prime}(x)-g^{\prime}(y)\right|<\epsilon$ whenever $|x-y|<\delta$ and $|x|,|y| \leq M+1$.

If $\|u-v\|<\delta$, then $|u(t)-v(t)|<\delta$ for all t (again since $\nu \geq 0$, so $|u(t)|,|v(t)| \leq M+1$ for all t as well. Thus

$$
\left\|D G_{u}-D G_{v}\right\| \leq \sup _{\|h\| \leq 1} \sup _{t \geq 0} \epsilon|h(t)| e^{\nu t}=\epsilon \sup _{\|h\| \leq 1}\|h\|=\epsilon
$$

We conclude $D G$ is a continuous function of u, so G is C^{1}.

