ANALYSIS - HOMEWORK 7

Problem 1: Consider the system

$$
\left\{\begin{array}{r}
3 x^{2} z+6 w y^{2}-2 z+1=0 \\
x z-\frac{4 y}{z}-3 w-z=0
\end{array}\right.
$$

Show that you can solve for x and y in terms of z and w around the point $(1,2,-1,0)$ and calculate $G^{\prime}(-1,0)$ (where G is the graph of x, y in terms of $z, w)$

Problem 2: Show that the Implicit Function Theorem implies (the following version of) the Inverse Function Theorem:

Inverse Function Theorem:

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}. If $\operatorname{det}\left(f^{\prime}(a)\right) \neq 0$ for some a, there is an open neighborhood U of a and an open neighborhood V of $f(a)$ and $g: V \rightarrow U$ such that $f(g(y))=y$ for all y. Moreover

$$
g^{\prime}(f(a))=\left(f^{\prime}(a)\right)^{-1}
$$

Note: Hence, combined with the proof given in class, the Inverse and Implicit function theorems are equivalent.

Problem 3: Show that if $f(0)=0$ and

$$
f(t)=t+2 t^{2} \sin \left(\frac{1}{t}\right)
$$

Then $f^{\prime}(0)=1, f^{\prime}$ is bounded in $(-1,1)$ but f is not one-to-one in any neighborhood of 0 .

In other words, the continuity of f^{\prime} at a is really needed in the inverse function theorem!

Problem 4: Let $f=\left(f_{1}, f_{2}\right)$ be the mapping of \mathbb{R}^{2} into \mathbb{R}^{2} defined by

$$
\begin{aligned}
& f_{1}(x, y)=e^{x} \cos (y) \\
& f_{2}(x, y)=e^{x} \sin (y)
\end{aligned}
$$

(a) Show that the Jacobian of f is not zero at any point of \mathbb{R}^{2}. Thus every point of \mathbb{R}^{2} has a neighborhood in which f is one-to-one. Nevertheless, show that f is not one-to-one on \mathbb{R}^{2}
(b) Let $a=\left(0, \frac{\pi}{3}\right)$ and $b=f(a)$. Let g be the continuous inverse of f, defined in a neighborhood of b such that $g(b)=a$. Find an explicit formula for g, compute $f^{\prime}(a)$ and $g^{\prime}(b)$ and verify that $f^{\prime}(g(x, y)) g^{\prime}(x, y)=I$ holds in this case

Problem 5: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and consider $F: X \rightarrow X$ where $X=C([a, b])$ with its sup norm, defined by

$$
F(u)(t)=f(u(t))
$$

Show that F is differentiable and find $D F$
(Turn page)

Problem 6: For each fixed $\nu \in \mathbb{R}$ consider the space
$X_{\nu}=:\left\{u:[0, \infty) \rightarrow \mathbb{R}^{n} \mid u\right.$ is continuous and $\left.\|u\|=: \sup _{t \geq 0}|u(t)| e^{\nu t}<\infty\right\}$
Notice in particular that $|u(t)| \leq\|u\| e^{-\nu t}$ for all $t \geq 0$
(a) Prove that X_{ν} is a Banach space with respect to the norm $\|\cdot\|$
(b) Assume that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $g(0)=0$ and is Lipschitz continuous. Show that $G: X_{\nu} \rightarrow X_{\nu}$ defined by

$$
[G(u)](t)=g(u(t))
$$

Is well-defined and Lipschitz continuous. How are the Lipschitz constants of g and G related?
(c) For $\nu \geq 0$, prove that $g \in C^{1}$ implies $G \in C^{1}$

