
HOMEWORK 8 − SOLUTIONS

Note: Here the xk and tk are switched (compared to the notes)

Problem 1:

STEP 1: Partition

P = {0 = t0 < t1 < · · · < tn = 1}

STEP 2: U(f, P )

Since x2 is increasing, notice that:

sup
t∈[tk−1,tk]

f(t) = f(tk) = (tk)
2 (Right Endpoint)

U(f, P ) =
n∑

k=1

(tk)
2 (tk − tk−1)

STEP 3: U(f)

Given n, let P be the evenly spaced Calculus partition with tk =
k
n :

In that case tk − tk−1 =
1
n and

1
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U(f, P ) =
n∑

k=1

(
k

n

)2(
1

n

)
=

n∑
k=1

k2

n3

=
1

n3

n∑
k=1

k2

=
1

n3

(
n(n+ 1)(2n+ 1)

6

)
=
(n+ 1)(2n+ 1)

6n2

Upshot: Since U(f) is the inf over all partitions, we must have

U(f) ≤ U(f, P ) =
(n+ 1)(2n+ 1)

6n2

Therefore, taking the limit as n → ∞ of the right hand side1, we get
U(f) ≤ 2

6 =
1
3 , and so U(f) ≤ 1

3

STEP 4: L(f)

This is similar to the above, except that here inft∈[tk−1,tk] f(t) = (tk−1)
2

(Left endpoint), and so, using sup we get L(f) ≥ 1
3 .

Since U(f) ≤ 1
3 ≤ L(f) and because L(f) ≤ U(f), we get L(f) =

U(f) = 1
3 . Hence f(x) = x2 is Darboux integrable and

∫ 1

0 x2dx = 1
3 .

Problem 2:

1Here we used that if a ≤ sn, then so is a ≤ s, where s is the limit of sn
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Proof: WLOG, assume f is strictly increasing, and so f(a) < f(b)

Main Observation: In that case, we have

sup
t∈[tk−1,tk]

f(t) = f(tk−1) and inf
t∈[tk−1,tk]

f(t) = f(tk)

In order to show f is integrable, let’s use the Darboux integrability
criterion

Let ϵ > 0 be given, let δ = ϵ
f(b)−f(a) and and let P = {a = t0 < t1 < · · · < tn = b}

be any partition with mesh < δ, then:

U(f, P )− L(f, P ) =
n∑

k=1

f(tk)(tk − tk−1)−
n∑

k=1

f(tk−1)(tk − tk−1)

=
n∑

k=1

(f(tk)− f(tk−1)) (tk − tk−1)

<

n∑
k=1

(f(tk)− f(tk−1))
ϵ

f(b)− f(a)

=
ϵ

f(b)− f(a)

n∑
k=1

f(tk)− f(tk−1)

=

(
ϵ

f(b)− f(a)

)
(f(tn)− f(t0)) (Telescoping sum)

=

(
ϵ

f(b)− f(a)

)
(f(b)− f(a))

=ϵ✓

Hence f is integrable □
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Problem 3:

Proof:

(⇒) Let ϵ > 0 be given, then and consider:

L(f)− ϵ

2
< L(f) = sup { L(f, P ) | P partition }

By def of sup, there is a partition P1 such that L(f, P1) > L(f)− ϵ
2

Similarly there is a partition P2 such that U(f, P2) < U(f) + ϵ
2

Let P = P1∪P2 (finer), then L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2),
and therefore:

U(f, P )− L(f, P ) ≤U(f, P2)− L(f, P1)

<U(f) +
ϵ

2
−
(
L(f)− ϵ

2

)
=U(f)− L(f)︸ ︷︷ ︸

0

+ϵ

=ϵ

Here we used U(f) = L(f), since f is integrable ✓

(⇐) Let ϵ > 0 be given and let P be such that U(f, P )− L(f, P ) < ϵ.
Then by definition of U(f) as an inf, we get:

U(f) ≤U(f, P )

=U(f, P )−L(f, P ) + L(f, P )

<ϵ+ L(f, P )

≤ϵ+ L(f)
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Hence U(f) < L(f) + ϵ for all ϵ > 0, hence U(f) ≤ L(f), but since
L(f) ≤ U(f) as well, we get U(f) = L(f) ✓ □

Problem 4:

Beautiful application of uniform continuity!

Since f is continuous on [a, b], it is uniformly continuous on [a, b]

Let ϵ > 0 be given, then there is δ > 0 such that for all x and y, if
|x− y| < δ, then |f(x)− f(y)| < ϵ

b−a

Let P = {a = t0 < t1 < · · · < tn = b} be any part. with mesh(P ) < δ.

Since f is continuous on each sub-piece [tk−1, tk], it attains a maximum
and a minimum for some xk and yk in [tk−1, tk]

Therefore, by definition,

sup
t∈[tk−1,tk]

= f(xk) and inf
t∈[tk−1,tk]

= f(yk)

U(f, P )− L(f, P ) =
n∑

k=1

(f(xk)− f(yk)) (tk − tk−1)

≤
n∑

k=1

|f(xk)− f(yk)| (tk − tk−1)

<

n∑
k=1

(
ϵ

b− a

)
(tk − tk−1) (Uniform Continuity)

=
ϵ

b− a

n∑
k=1

tk − tk−1 =

(
ϵ

b− a

)
(b− a) = ϵ✓
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Hence, by the Darboux Integrability Criterion, f is integrable on [a, b]
□

Problem 5:

Fix a partition P , then for any x and y in a given sub-piece [tk−1, tk],
we have

(f(x))2 − (f(y))2 =(f(x) + f(y)) (f(x)− f(y))

≤ |f(x) + f(y)| |f(x)− f(y)|
≤ (|f(x)|+ |f(y)|) |f(x)− f(y)|
≤ (B +B) |f(x)− f(y)|
=2B |f(x)− f(y)|

Here B = supx |f(x)|

Then, taking the sup over x ∈ [tk−1, tk] and then the inf over y ∈
[tk−1, tk], we get

sup
t∈[tk−1,tk]

f 2 − inf
t∈[tk−1,tk]

f 2 ≤2B

∣∣∣∣∣ sup
t∈[tk−1,tk]

f − inf
t∈[tk−1,tk]

f

∣∣∣∣∣
=2B

(
sup

t∈[tk−1,tk]

f − inf
t∈[tk−1,tk]

f

)

Finally, summing over k, we get

U(f 2, P )− L(f 2, P ) ≤ 2B (U(f, P )− L(f, P ))

Now, let ϵ > 0 be given, then since f is integrable on [a, b], by
the Darboux Integrability Criterion, there is a partition P such that
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U(f, P )− L(f, P ) < ϵ
2B .

With the same P , we get

U(f 2, P )− L(f 2, P ) ≤ 2B (U(f, P )− L(f, P )) < (2B)
( ϵ

2B

)
= ϵ✓

Hence, by the Darboux Integrability criterion again, f 2 is integrable
on [a, b]

For the counterexample, let f(x) = 1√
x
then∫ 1

0

f(x)dx =

∫ 1

0

1√
x
dx =

[
2
√
x
]1
0
= 2

But f 2 = 1
x and ∫ 1

0

f 2(x)dx =

∫ 1

0

1

x
= [ln |x|]10 = ∞

Problem 6:

Proof: The idea is to choose a clever xk that makes the Riemann sum
equal to f(b)− f(a)

Let P be any partition of [tk−1, tk]

By the MVT, for every k, there is xk in [tk−1, tk] such that

f ′(xk) =
f(tk)− f(tk−1)

tk − tk−1

This implies
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f ′(xk) (tk − tk−1) = f(tk)− f(tk−1)

With this choice of xk the Riemann sum of f ′ becomes

n∑
k=1

f ′(xk) (tk − tk−1) =
n∑

k=1

f(tk)− f(tk−1)

=f(t1)− f(t0) + f(t2)− f(t1) + · · ·+ f(tn)− f(tn−1)

=f(tn)− f(t0)

=f(b)− f(a)

Since this is true for any partition P , we get∫ b

a

f ′(x)dx = f(b)− f(a) □

Problem 7:

Proof: Beautiful application of uniform continuity (!)

STEP 1: Scratchwork

Our goal is to show that F ′(x) = f(x), that is

lim
h→0

F (x+ h)− F (x)

h
= f(x)

∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
∣∣∣∣∣
∫ x+h

a f(t)dt−
∫ x

a f(t)dt

h
− f(x)

∣∣∣∣∣ =
∣∣∣∣∣
∫ x+h

x f(t)dt

h
− f(x)

∣∣∣∣∣
Clever Observation: It would be nice if we could write f(x) as an
integral of the same form, but notice that:
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f(x) =

∫ x+h

x f(x)dt

h
Why? Since f(x) doesn’t depend on t, we get

∫ x+h

x

f(x)dt = f(x)

∫ x+h

x

1 dt = f(x)(x+ h− x) = f(x)h

And solving for f(x), we get the desired identity.

Continuing, we get:

∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
∣∣∣∣∣
∫ x+h

x f(t)dt

h
−
∫ x+h

x f(x)dt

h

∣∣∣∣∣
=

∣∣∣∣∣
∫ x+h

x f(t)− f(x)dt

h

∣∣∣∣∣
≤1

h

∫ x+h

x

|f(t)− f(x)| dt

(WLOG, assume h > 0 here)

And this is where continuity kicks in!

STEP 2: Actual Proof

Let ϵ > 0 be given

Since f is continuous on [a, b], f is uniformly continuous on [a, b], and
so there is δ > 0 such that if |x− y| < δ, then |f(x)− f(y)| < ϵ.
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With the same δ, if 0 < h < δ then |f(t)− f(x)| < ϵ

Why? If t is in [x, x+h] then |x− t| ≤ h < δ, and so |f(t)− f(x)| < ϵ

We can continue the calculation to get

∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤1

h

∫ x+h

x

|f(t)− f(x)| dt

<
1

h

∫ x+h

x

ϵ dt

=
ϵ

h
(x+ h− x)

=ϵ

(
h

h

)
=ϵ

Hence if 0 < h < δ, then
∣∣∣F (x+h)−F (x)

h − f(x)
∣∣∣ < ϵ

Therefore limh→0
F (x+h)−F (x)

h = f(x) that is F ′(x) = f(x) □

(Technically we’ve only shown the limit as h → 0+, but the other limit
is similar)

Problem 8:
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∫ 1

0

x tan−1(x)dx =

[(
x2 + 1

2

)
tan−1(x)

]1
0

−
∫ 1

0

(
x2 + 1

2

)(
1

x2 + 1

)
dx

=

(
2

2

)
tan−1(1)− 1

2
tan−1(0)−

∫ 1

0

1

2
dx

=
π

4
− 1

2


