HOMEWORK 8 — SOLUTIONS

Note: Here the xj; and t; are switched (compared to the notes)
Problem 1:

STEP 1: Partition

P={0=ty<t1 <---<t,=1}
STEP 2: U(f,P)

Since 22 is increasing, notice that:

sup  f(t) = f(t;) = (t;)* (Right Endpoint)

tG[tk_l,tk]

STEP 3: U(f)
Given n, let P be the evenly spaced Calculus partition with ¢, = %:

In that case ¢, — tp_1 = % and
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Upshot: Since U(f) is the inf over all partitions, we must have

(n+1)(2n+1)
6n?

Therefore, taking the limit as n — oo of the right hand sideEL we get
U(f) <2=1 and so U(f) < L

U(f) <U(f,P) =

STEP 4: L(f)

This is similar to the above, except that here inf,cpy, | 4,1 f(t) = (tr_1)”
(Left endpoint), and so, using sup we get L(f) > %

Since U(f) < 5 < L(f) and because L(f) < U(f), we get L(f) =
U(f) = 3. Hence f(z) = 2* is Darboux integrable and fol ridx = 3.

Problem 2:

1Here we used that if a < s, then so is a < s, where s is the limit of s,
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Proof: WLOG, assume f is strictly increasing, and so f(a) < f(b)

Main Observation: In that case, we have
sup  f(t) = f(tr) and inf f(£) = f(t)
te[te_1,tx] tE[tk_l,tk}

In order to show f is integrable, let’s use the Darboux integrability
criterion

Let € > 0 be given, let § = 77755 and and let P = {a=ty<ti<---<t,=0}
be any partition with mesh < ¢, then:

n

U(/f, P) Z ) (e — 1) = > f(e—1) Tk — ti-1)

k=1

= Z f(te-1)) (Er — tr—1)

< Z M) 5 =

Tl

:W -~ f(tk> f(tk 1)

— 0 ) to))  (Telescoping sum)
N0 )

=ev’

Hence f is integrable ]
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Problem 3:
Proof:

(=) Let € > 0 be given, then and consider:

L(f) — g < L(f) = sup { L(f, P)| P partition }
By def of sup, there is a partition P such that L(f, P1) > L(f) — §

Similarly there is a partition P, such that U(f, P») < U(f) + 5

Let P = P UP, (finer), then L(f, P,) < L(f, P) < U(f,P) < U(f, P»),
and therefore:

U(f,P)—L(f,P) SU(.ﬂPQ)_L(f?Pl)

Here we used U(f) = L(f), since f is integrable v’

(<) Let € > 0 be given and let P be such that U(f, P) — L(f, P) < e.
Then by definition of U(f) as an inf, we get:

U(f) <U(. P)
—U(f,P)~L(f, P) + L(f, P)
<e+ L(f, P)
<e+ L(f)
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Hence U(f) < L(f) + € for all € > 0, hence U(f) < L(f), but since
L(f) <U(f) as well, we get U(f) = L(f)\/ O

Problem 4:
Beautiful application of uniform continuity!
Since f is continuous on [a, b], it is uniformly continuous on [a, b

Let € > 0 be given, then there is 6 > 0 such that for all z and vy, if
[z —y| <0, then [f(z) — f(y)] <55

Let P={a=1t <t <---<t,=>b} beany part. with mesh(P) < 4.

Since f is continuous on each sub-piece [t;_1, tx], it attains a maximum
and a minimum for some x; and yj in [tr_1, tx]

Therefore, by definition,
sup = f(zg) and inf = f(y)

tE€tk—1,tx) teth—1,tk]

n

U(f,P) = L(f,P) = Z (f(@x) = Flye)) (b — tia)
<Z\f$k i)l (te = tr-1)

< Z (ﬁ) (tx —tg—1)  (Uniform Continuity)
k=1
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Hence, by the Darboux Integrability Criterion, f is integrable on [a, 0]
]

Problem 5:

Fix a partition P, then for any x and y in a given sub-piece [t;_1, tx],
we have

(f(@)" = (f()" = (f(z) + [()) (f(x) = f(y))
|

<[f(@) + FWf (=) = f(y)
< (S @)+ W) [f(x) = f(y)l
<(B+B)|f(x) = f(y)]

=2B|f(z) = f(y)l
Here B = sup, |f(z)]

Then, taking the sup over z € [ty_1,t;] and then the inf over y €
[tk—b tk], we get

sup f2— inf f?<2B

t€[tr—1,tk) tety—1,tx]

sup f— inf f'

t€[tr—1,tk) tety—1,tx]

=2B sup f— inf f
tE[tk—_1,tx] te€ltr_1,tx]

Finally, summing over k, we get

U(f2,P)—L(f2,P) SQB(U(f,P)—L(f,P))

Now, let ¢ > 0 be given, then since f is integrable on [a,b], by
the Darboux Integrability Criterion, there is a partition P such that
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U(f.P) = L(f, P) < 5.

With the same P, we get

U(f%P) = L(f P) < 2B(U(f, P) = L(f. P) < (2B) (55) = &

Hence, by the Darboux Integrability criterion again, f? is integrable
on [a, b]

For the counterexample, let f(x) = \/LE then

[ P = [ =il =

Proof: The idea is to choose a clever x; that makes the Riemann sum

equal to f(b) — f(a)

Problem 6:

Let P be any partition of [t;_1,t1]
By the MVT, for every k, there is zj, in [t;_1, ;] such that

f(te) — f(tr-1)

b — trp—1

f(wy) =

This implies
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fir) (e — ti-1) = f(te) — f(ti-1)
With this choice of x; the Riemann sum of f’ becomes

n

Zf ) (b — te1) = > ftx) = f(ti)

k=1

=f(t1) = f(to) + f(t2) = f(t1) + -+ f(tn) — f(ta-1)
- (tn) - f(t())

~F(b) — f(a)

[ 1@ia = 10)- o) O
Problem 7:
Proof: Beautiful application of uniform continuity (!)
STEP 1: Scratchwork

Our goal is to show that F'(x) = f(x), that is
F(x +h) — F(z)

lim = f(x)
F(z +h) — F(x) T - [ fdt S p@d
- — f(2)] = ; f(x)' ol e —

Clever Observation: It would be nice if we could write f(x) as an
integral of the same form, but notice that:
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B If+hf1x)dt
flay = =TT

Why? Since f(x) doesn’t depend on t, we get

x+h x+h
[ t@at=g@ [ vat = f@a b= ) = fah
And solving for f(z), we get the desired identity.

Continuing, we get:

'F(erh)—F(x) o) = L pwde [T fa)at
h h
LT ) = f@t
h

(WLOG, assume h > 0 here)

And this is where continuity kicks in!
STEP 2: Actual Proof

Let € > 0 be given

Since f is continuous on [a,b], f is uniformly continuous on [a, b], and
so there is § > 0 such that if |z — y| < 9, then |f(z) — f(y)| < e
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With the same 6, if 0 < h < 6 then |f(t) — f(z)| <€
Why? If tisin [z,x+h] then |z —t| < h < §, and so |f(t) — f(x)| <€

We can continue the calculation to get

Fz + h}i — F) _ f(z) g% /Hh |f(t) — f(x)|dt
1 xz—!-h
<E ’ € dt
€
_(h
—€ %

I
M

Hence if 0 < i < 8, then | "L f(a)) <

Therefore limy,_, w = f(x) that is F'(z) = f(z) u

(Technically we’ve only shown the limit as h — 07, but the other limit
is similar)

Problem 8:
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