HOMEWORK 8 - SOLUTIONS

Note: Here the x_{k} and t_{k} are switched (compared to the notes)

Problem 1:

STEP 1: Partition

$$
P=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}
$$

STEP 2: $U(f, P)$
Since x^{2} is increasing, notice that:

$$
\begin{gathered}
\sup _{t \in\left[t_{k-1}, t_{k}\right]} f(t)=f\left(t_{k}\right)=\left(t_{k}\right)^{2} \quad \text { (Right Endpoint) } \\
U(f, P)=\sum_{k=1}^{n}\left(t_{k}\right)^{2}\left(t_{k}-t_{k-1}\right)
\end{gathered}
$$

STEP 3: $U(f)$
Given n, let P be the evenly spaced Calculus partition with $t_{k}=\frac{k}{n}$:
In that case $t_{k}-t_{k-1}=\frac{1}{n}$ and

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2}\left(\frac{1}{n}\right) \\
& =\sum_{k=1}^{n} \frac{k^{2}}{n^{3}} \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right) \\
& =\frac{(n+1)(2 n+1)}{6 n^{2}}
\end{aligned}
$$

Upshot: Since $U(f)$ is the inf over all partitions, we must have

$$
U(f) \leq U(f, P)=\frac{(n+1)(2 n+1)}{6 n^{2}}
$$

Therefore, taking the limit as $n \rightarrow \infty$ of the right hand sid $\mathbb{1}$, we get $U(f) \leq \frac{2}{6}=\frac{1}{3}$, and so $U(f) \leq \frac{1}{3}$

STEP 4: $L(f)$
This is similar to the above, except that here $\inf _{t \in\left[t_{k-1}, t_{k}\right]} f(t)=\left(t_{k-1}\right)^{2}$ (Left endpoint), and so, using sup we get $L(f) \geq \frac{1}{3}$.

Since $U(f) \leq \frac{1}{3} \leq L(f)$ and because $L(f) \leq U(f)$, we get $L(f)=$ $U(f)=\frac{1}{3}$. Hence $f(x)=x^{2}$ is Darboux integrable and $\int_{0}^{1} x^{2} d x=\frac{1}{3}$.

Problem 2:

[^0]Proof: WLOG, assume f is strictly increasing, and so $f(a)<f(b)$
Main Observation: In that case, we have

$$
\sup _{t \in\left[t_{k-1}, t_{k}\right]} f(t)=f\left(t_{k-1}\right) \text { and } \inf _{t \in\left[t_{k-1}, t_{k}\right]} f(t)=f\left(t_{k}\right)
$$

In order to show f is integrable, let's use the Darboux integrability criterion

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{f(b)-f(a)}$ and and let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ be any partition with mesh $<\delta$, then:

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{k=1}^{n} f\left(t_{k}\right)\left(t_{k}-t_{k-1}\right)-\sum_{k=1}^{n} f\left(t_{k-1}\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(f\left(t_{k}\right)-f\left(t_{k-1}\right)\right)\left(t_{k}-t_{k-1}\right) \\
& <\sum_{k=1}^{n}\left(f\left(t_{k}\right)-f\left(t_{k-1}\right)\right) \frac{\epsilon}{f(b)-f(a)} \\
& =\frac{\epsilon}{f(b)-f(a)} \sum_{k=1}^{n} f\left(t_{k}\right)-f\left(t_{k-1}\right) \\
& =\left(\frac{\epsilon}{f(b)-f(a)}\right)\left(f\left(t_{n}\right)-f\left(t_{0}\right)\right) \quad \text { (Telescoping sum) } \\
& =\left(\frac{\epsilon}{f(b)-f(a)}\right)(f(b)-f(a)) \\
& =\epsilon \checkmark
\end{aligned}
$$

Hence f is integrable

Problem 3:

Proof:

(\Rightarrow) Let $\epsilon>0$ be given, then and consider:

$$
L(f)-\frac{\epsilon}{2}<L(f)=\sup \{L(f, P) \mid P \text { partition }\}
$$

By def of sup, there is a partition P_{1} such that $L\left(f, P_{1}\right)>L(f)-\frac{\epsilon}{2}$
Similarly there is a partition P_{2} such that $U\left(f, P_{2}\right)<U(f)+\frac{\epsilon}{2}$
Let $P=P_{1} \cup P_{2}($ finer $)$, then $L\left(f, P_{1}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P_{2}\right)$, and therefore:

$$
\begin{aligned}
U(f, P)-L(f, P) & \leq U\left(f, P_{2}\right)-L\left(f, P_{1}\right) \\
& <U(f)+\frac{\epsilon}{2}-\left(L(f)-\frac{\epsilon}{2}\right) \\
& =\underbrace{U(f)-L(f)}_{0}+\epsilon \\
& =\epsilon
\end{aligned}
$$

Here we used $U(f)=L(f)$, since f is integrable \checkmark
(\Leftarrow) Let $\epsilon>0$ be given and let P be such that $U(f, P)-L(f, P)<\epsilon$. Then by definition of $U(f)$ as an inf, we get:

$$
\begin{aligned}
U(f) & \leq U(f, P) \\
& =U(f, P)-L(f, P)+L(f, P) \\
& <\epsilon+L(f, P) \\
& \leq \epsilon+L(f)
\end{aligned}
$$

Hence $U(f)<L(f)+\epsilon$ for all $\epsilon>0$, hence $U(f) \leq L(f)$, but since $L(f) \leq U(f)$ as well, we get $U(f)=L(f) \checkmark$

Problem 4:

Beautiful application of uniform continuity!
Since f is continuous on $[a, b]$, it is uniformly continuous on $[a, b]$
Let $\epsilon>0$ be given, then there is $\delta>0$ such that for all x and y, if $|x-y|<\delta$, then $|f(x)-f(y)|<\frac{\epsilon}{b-a}$

Let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ be any part. with $\operatorname{mesh}(P)<\delta$.
Since f is continuous on each sub-piece $\left[t_{k-1}, t_{k}\right]$, it attains a maximum and a minimum for some x_{k} and y_{k} in $\left[t_{k-1}, t_{k}\right]$

Therefore, by definition,

$$
\begin{aligned}
\sup _{t \in\left[t_{k-1}, t_{k}\right]} & =f\left(x_{k}\right) \text { and } \inf _{t \in\left[t_{k-1}, t_{k}\right]}=f\left(y_{k}\right) \\
U(f, P)-L(f, P) & =\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(y_{k}\right)\right)\left(t_{k}-t_{k-1}\right) \\
& \leq \sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(y_{k}\right)\right|\left(t_{k}-t_{k-1}\right) \\
& <\sum_{k=1}^{n}\left(\frac{\epsilon}{b-a}\right)\left(t_{k}-t_{k-1}\right) \quad(\text { Uniform Continuity) } \\
& =\frac{\epsilon}{b-a} \sum_{k=1}^{n} t_{k}-t_{k-1}=\left(\frac{\epsilon}{b-a}\right)(b-a)=\epsilon \checkmark
\end{aligned}
$$

Hence, by the Darboux Integrability Criterion, f is integrable on $[a, b]$

Problem 5:

Fix a partition P, then for any x and y in a given sub-piece $\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{aligned}
(f(x))^{2}-(f(y))^{2} & =(f(x)+f(y))(f(x)-f(y)) \\
& \leq|f(x)+f(y)||f(x)-f(y)| \\
& \leq(|f(x)|+|f(y)|)|f(x)-f(y)| \\
& \leq(B+B)|f(x)-f(y)| \\
& =2 B|f(x)-f(y)|
\end{aligned}
$$

Here $B=\sup _{x}|f(x)|$
Then, taking the sup over $x \in\left[t_{k-1}, t_{k}\right]$ and then the inf over $y \in$ [t_{k-1}, t_{k}], we get

$$
\begin{aligned}
\sup _{t \in\left[t_{k-1}, t_{k}\right]} f^{2}-\inf _{t \in\left[t_{k-1}, t_{k}\right]} f^{2} & \leq 2 B\left|\sup _{t \in\left[t_{k-1}, t_{k}\right]} f-\inf _{t \in\left[t_{k-1}, t_{k}\right]} f\right| \\
& =2 B\left(\sup _{t \in\left[t_{k-1}, t_{k}\right]} f-\inf _{t \in\left[t_{k-1}, t_{k}\right]} f\right)
\end{aligned}
$$

Finally, summing over k, we get

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P))
$$

Now, let $\epsilon>0$ be given, then since f is integrable on $[a, b]$, by the Darboux Integrability Criterion, there is a partition P such that
$U(f, P)-L(f, P)<\frac{\epsilon}{2 B}$.
With the same P, we get

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P))<(2 B)\left(\frac{\epsilon}{2 B}\right)=\epsilon \checkmark
$$

Hence, by the Darboux Integrability criterion again, f^{2} is integrable on $[a, b]$

For the counterexample, let $f(x)=\frac{1}{\sqrt{x}}$ then

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{1}{\sqrt{x}} d x=[2 \sqrt{x}]_{0}^{1}=2
$$

But $f^{2}=\frac{1}{x}$ and

$$
\int_{0}^{1} f^{2}(x) d x=\int_{0}^{1} \frac{1}{x}=[\ln |x|]_{0}^{1}=\infty
$$

Problem 6:

Proof: The idea is to choose a clever x_{k} that makes the Riemann sum equal to $f(b)-f(a)$

Let P be any partition of $\left[t_{k-1}, t_{k}\right]$
By the MVT, for every k, there is x_{k} in $\left[t_{k-1}, t_{k}\right]$ such that

$$
f^{\prime}\left(x_{k}\right)=\frac{f\left(t_{k}\right)-f\left(t_{k-1}\right)}{t_{k}-t_{k-1}}
$$

This implies

$$
f^{\prime}\left(x_{k}\right)\left(t_{k}-t_{k-1}\right)=f\left(t_{k}\right)-f\left(t_{k-1}\right)
$$

With this choice of x_{k} the Riemann sum of f^{\prime} becomes

$$
\begin{aligned}
\sum_{k=1}^{n} f^{\prime}\left(x_{k}\right)\left(t_{k}-t_{k-1}\right) & =\sum_{k=1}^{n} f\left(t_{k}\right)-f\left(t_{k-1}\right) \\
& =f\left(t_{1}\right)-f\left(t_{0}\right)+f\left(t_{2}\right)-f\left(t_{1}\right)+\cdots+f\left(t_{n}\right)-f\left(t_{n-1}\right) \\
& =f\left(t_{n}\right)-f\left(t_{0}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

Since this is true for any partition P, we get

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Problem 7:

Proof: Beautiful application of uniform continuity (!)

STEP 1: Scratchwork

Our goal is to show that $F^{\prime}(x)=f(x)$, that is

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x) \\
\left|\frac{F(x+h)-F(x)}{h}-f(x)\right|=\left|\frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}-f(x)\right|=\left\lvert\, \frac{\int_{x}^{x+h} f(t) d t}{h}-f(\right.
\end{gathered}
$$

Clever Observation: It would be nice if we could write $f(x)$ as an integral of the same form, but notice that:

$$
f(x)=\frac{\int_{x}^{x+h} f(x) d t}{h}
$$

Why? Since $f(x)$ doesn't depend on t, we get

$$
\int_{x}^{x+h} f(x) d t=f(x) \int_{x}^{x+h} 1 d t=f(x)(x+h-x)=f(x) h
$$

And solving for $f(x)$, we get the desired identity.

Continuing, we get:

$$
\begin{aligned}
\left|\frac{F(x+h)-F(x)}{h}-f(x)\right| & =\left|\frac{\int_{x}^{x+h} f(t) d t}{h}-\frac{\int_{x}^{x+h} f(x) d t}{h}\right| \\
& =\left|\frac{\int_{x}^{x+h} f(t)-f(x) d t}{h}\right| \\
& \leq \frac{1}{h} \int_{x}^{x+h}|f(t)-f(x)| d t
\end{aligned}
$$

(WLOG, assume $h>0$ here)

And this is where continuity kicks in!

STEP 2: Actual Proof

Let $\epsilon>0$ be given

Since f is continuous on $[a, b], f$ is uniformly continuous on $[a, b]$, and so there is $\delta>0$ such that if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.

With the same δ, if $0<h<\delta$ then $|f(t)-f(x)|<\epsilon$
Why? If t is in $[x, x+h]$ then $|x-t| \leq h<\delta$, and so $|f(t)-f(x)|<\epsilon$
We can continue the calculation to get

$$
\begin{aligned}
\left|\frac{F(x+h)-F(x)}{h}-f(x)\right| & \leq \frac{1}{h} \int_{x}^{x+h}|f(t)-f(x)| d t \\
& <\frac{1}{h} \int_{x}^{x+h} \epsilon d t \\
& =\frac{\epsilon}{h}(x+h-x) \\
& =\epsilon\left(\frac{h}{h}\right) \\
& =\epsilon
\end{aligned}
$$

Hence if $0<h<\delta$, then $\left|\frac{F(x+h)-F(x)}{h}-f(x)\right|<\epsilon$
Therefore $\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x)$ that is $F^{\prime}(x)=f(x)$
(Technically we've only shown the limit as $h \rightarrow 0^{+}$, but the other limit is similar)

Problem 8:

$$
\begin{aligned}
\int_{0}^{1} x \tan ^{-1}(x) d x & =\left[\left(\frac{x^{2}+1}{2}\right) \tan ^{-1}(x)\right]_{0}^{1}-\int_{0}^{1}\left(\frac{x^{2}+1}{2}\right)\left(\frac{1}{x^{2}+1}\right) d x \\
& =\left(\frac{2}{2}\right) \tan ^{-1}(1)-\frac{1}{2} \tan ^{-1}(0)-\int_{0}^{1} \frac{1}{2} d x \\
& =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

[^0]: ${ }^{1}$ Here we used that if $a \leq s_{n}$, then so is $a \leq s$, where s is the limit of s_{n}

