
HOMEWORK 9 − SOLUTIONS

Problem 1:

STEP 1: Define the following equivalence relation on [0, 1]:

x ∼ y ⇔ x− y is rational

Using ∼ we can partition [0, 1] into equivalence classes, that is we can
write [0, 1] as a disjoint union

[0, 1] =
⋃

a∈[0,1]

[a]

Where [a] = {x | x ∼ a}

STEP 2: For every equivalence class [a], choose exactly one element
xa from each equivalence class, and let

N = {xa}
(This “choosing” step requires the axiom of choice)

STEP 3: N is not measurable.

By contradiction, suppose N is measurable.

Let {rk}∞k=1 be an enumeration of all the rationals in [−1, 1] and con-
sider the translates

Nk =: N + rk

We claim that Nk are disjoint and
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[0, 1] ⊆
∞⋃
k=1

Nk ⊆ [−1, 2]

Disjoint: Suppose Nk ∩Np ̸= ∅. Then there are rationals rk ̸= rp and
a and b such that xa + rk = xb + rp but then xa − xb = rp − rk ∈ Q
and hence xa ∼ xb which contradicts the fact that we chose exactly one
element from each equivalence class

Inclusions: If x ∈ [0, 1] then x ∼ xa for some a and hence x−xa = rk
for some k and so x ∈ Nk and the second inclusion holds since each
Nk is contained in [−1, 2] by construction

STEP 4: Conclusion

If each N were measurable, then so would Nk for all k (by translation)
and since the union

⋃∞
k=1Nk is disjoint, the above would imply:

m([0, 1]) ≤m

( ∞⋃
k=1

Nk

)
≤ m([−1, 2])

1 ≤
∞∑
k=1

m(Nk) ≤ 3

Since Nk is a translate of N , we have m(Nk) = m(N ) and hence

1 ≤
∞∑
k=1

m(N ) ≤ 3

Hence a contradiction, since neither m(N ) = 0 or m(N ) > 0 holds □

Problem 2:
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Part (a): Since E ⊂ F , we can write F as the disjoint union of E and
F \ E. Therefore by additivity of measure

µ(E) + µ(F \ E) = µ(F )

By nonnegativity of measure, µ(F \ E) ≥ 0, so µ(E) ≤ µ(F ). Also,
if µ(E) < ∞, we can subtract it from both sides to get µ(F \ E) =
µ(F )− µ(E).

Part (b): For each n, let

Fn = En \
⋃
m<n

Em.

Then the Fn are disjoint and measurable and their union is the same
as the union of the En. Also, Fn ⊂ En, so µ(Fn) ≤ µ(En). Therefore,
using countable additivity of measure,

µ

( ∞⋃
n=1

En

)
= µ

( ∞⋃
n=1

Fn

)
=

∞∑
n=1

µ(Fn) ≤
∞∑
n=1

µ(En).

Part (c): For each n ≥ 2, let Fn = En \En−1, and let F1 = E1. Then
the Fn are disjoint and measurable and their union is the same as the
union of the En. Also, each En is the disjoint union of the Fm for
m ≤ n, so

µ(En) =
n∑

m=1

µ(Fn);

furthermore, the union of all the En is the same as the union of all the
Fn. Therefore, applying countable additivity of measure,

lim
n→∞

µ(En) =
∞∑
n=1

µ(Fn) = µ

( ∞⋃
n=1

Fn

)
= µ

( ∞⋃
n=1

En

)
.
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Part (d): Let Fn = E1 \ En, so the Fn are an increasing sequence of
sets and thus the previous part implies

lim
n→∞

µ(Fn) = µ

( ∞⋃
n=1

Fn

)
.

Since µ(En) ≤ µ(E1) < ∞, we have µ(Fn) = µ(E1) − µ(En) by part
(a). Now consider the right hand side: the union of all the Fn is E1

minus the intersection of all the En, which is contained in E1 and thus
has finite measure. Applying part (a) again,

µ

( ∞⋃
n=1

Fn

)
= µ(E1)− µ

( ∞⋂
n=1

En

)
.

Therefore,

lim
n→∞

(µ(E1)− µ(En)) = µ(E1)− µ

( ∞⋂
n=1

En

)
.

Since µ(E1) < ∞, we can subtract it from both sides and conclude

lim
n→∞

µ(En) = µ

( ∞⋂
n=1

En

)
.

Problem 3:

Part (a): We can write E as

E =
∞⋂
n=1

∞⋃
k=n

Ek.

This will imply E is measurable.



HOMEWORK 9 − SOLUTIONS 5

For the inclusion in the direction ⊂, note x ∈ E means there are
infinitely many k for which x ∈ Ek. Thus for any n, there is some
k ≥ n such that x ∈ Ek. It follows

x ∈
∞⋃
k=n

Ek

for all n, establishing the ⊂ inclusion.

For the other inclusion (in the direction ⊃), suppose

x ̸∈
∞⋂
n=1

∞⋃
k=n

Ek.

Then there is some n for which x ̸∈ Ek for any k ≥ n. Thus x ∈ Ek

for at most n values k, so x ̸∈ E.

Part (b): Define

Fn =
∞⋃
k=n

Ek.

Then the Fn are non-increasing. Since by problem 2(b)

µ(F1) = µ

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

µ(Ek) < ∞,

we can apply problem 2(d) to conclude

lim
n→∞

µ(Fn) = µ

( ∞⋂
n=1

Fn

)
= µ(E).
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So all that remains is to show µ(Fn) → 0. Applying problem 2(b)
again, we have

µ(Fn) = µ

( ∞⋃
k=n

Ek

)
≤

∞∑
k=n

µ(Ek)

By assumption,
∑n

k=1 µ(Ek) approaches a finite limit
∑∞

k=1 µ(Ek) as
n → ∞. Thus

∞∑
k=n

µ(Ek) =
∞∑
k=1

µ(Ek)−
n−1∑
k=1

µ(Ek) → 0

as n → ∞, and we are done.

Problem 4:

Part (a):

For f + g: Let α ∈ R. For any real u, v with u + v > α, there exists
rational q ∈ (α− v, u). Thus

(f + g)−1((α,∞)) = {x : f(x) + g(x) > α}

=
⋃
q∈Q

{x : f(x) > q > α− g(x)}

=
⋃
q∈Q

(f−1((q,∞)) ∩ g−1((α− q,∞))),

which is measurable; hence f + g is measurable.

For fg: Since continuous functions are Borel measurable and compo-
sitions of measurable functions are measurable, together with part (a)
we have that (f − g)2 and (f + g)2 are measurable. Writing

fg =
1

4
((f + g)2 − (f − g)2)
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and applying part (a), we conclude fg is measurable.

Part (b):

For max{f, g}: Let α ∈ R. Note max{f(x), g(x)} > α if and only if
either f(x) > α or g(x) > α. We therefore have

(max{f, g})−1((α,∞)) = f−1((α,∞)) ∪ g−1((α,∞)),

which is measurable; hence max{f, g} is measurable.

For min{f, g}: Write min{f, g} = −max{−f,−g}, so measurability
follows from the above.

Part (c):

For supn fn: Let α ∈ R. Note supn fn(x) > α if and only if fn(x) > α
for some n. Thus

(sup
n

fn)
−1((α,∞)) =

∞⋃
n=1

f−1
n ((α,∞)),

which is measurable; hence supn fn is measurable.

For infn fn: Write infn fn = − supn(−fn), so measurability follows from
the above.

Part (d):

For lim supn fn: Note lim supn fn = infn supk≥n fk, so measurability fol-
lows from part (b).
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For lim infn fn: Analogously, note lim infn fn = supn infk≥n fk, so mea-
surability follows from part (b).

Part (e):

For limn fn (if it exists): When limn fn exists, it is the same as lim supn fn
(or lim infn fn), which we have already showed is measurable.

Problem 5: Let N be the non-measurable subset from the first prob-
lem.

Given a ∈ N define

fa(x) =

{
1 if x = a

0 if x ̸= a

Then each fa is measurable but

f =: sup
a∈N

fa = χN

Which is not measurable since
{
1
2 ≤ f ≤ 2

}
= N which is not measur-

able

Problem 6: Here {fn(x)} is Cauchy, meaning for every k there is N
such that if m,n ≥ N then |fm(x)− fn(x)| < 1

k

Hence the set in question can be written as

∞⋂
k=1

∞⋃
N=1

∞⋂
m,n=N

{
x such that |fm(x)− fn(x)| <

1

k

}
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And therefore we’re done because the union/intersection of measurable
sets is measurable

Problem 7:

Let N be the non-measurable set from the first problem, and let
N c = [0, 1] \ N . Then m∗(N ∪N c) = m∗([0, 1]) = 1, and m∗(N ) > 0
(sinceN is non-measurable), so all we need to show is thatm∗(N c) = 1.

Assume, for the sake of contradiction, that m∗(N c) < 1. Then there
is ϵ > 0 and a measurable set U ⊂ [0, 1] containing N c such that
m∗(U) < 1 − ϵ. Note U c ⊂ N , and thus (since U c is measurable)
m∗(U

c) > ϵ.

Consider U c+ rk, where {rk}∞k=1 is the enumeration of the rationals on
[−1, 1] from problem 1. We have

∞⋃
k=1

(U c + rk) ⊂
∞⋃
k=1

Nk ⊂ [−1, 2].

But the U c + rk are measurable and disjoint (since U c + rk ⊂ Nk, and
the Nk are disjoint), and each has measure at least ϵ, so the measure
of the set on the left is infinite. This contradicts the fact that [−1, 2]
has measure 3; we conclude m∗(N c) = 1.


