HOMEWORK 9 - SOLUTIONS

Problem 1:

STEP 1: Define the following equivalence relation on [0, 1]:

$$x \sim y \Leftrightarrow x - y$$
 is rational

Using \sim we can partition [0, 1] into equivalence classes, that is we can write [0, 1] as a **disjoint** union

$$[0,1] = \bigcup_{a \in [0,1]} [a]$$

Where $[a] = \{x \mid x \sim a\}$

STEP 2: For every equivalence class [a], choose **exactly** one element x_a from each equivalence class, and let

$$\mathcal{N} = \{x_a\}$$

(This "choosing" step requires the axiom of choice)

STEP 3: \mathcal{N} is not measurable.

By contradiction, suppose \mathcal{N} is measurable.

Let $\{r_k\}_{k=1}^{\infty}$ be an enumeration of all the rationals in [-1, 1] and consider the translates

$$\mathcal{N}_k =: \mathcal{N} + r_k$$

We claim that \mathcal{N}_k are disjoint and

$$[0,1] \subseteq \bigcup_{k=1}^{\infty} \mathcal{N}_k \subseteq [-1,2]$$

Disjoint: Suppose $\mathcal{N}_k \cap \mathcal{N}_p \neq \emptyset$. Then there are rationals $r_k \neq r_p$ and a and b such that $x_a + r_k = x_b + r_p$ but then $x_a - x_b = r_p - r_k \in \mathbb{Q}$ and hence $x_a \sim x_b$ which contradicts the fact that we chose *exactly* one element from each equivalence class

Inclusions: If $x \in [0, 1]$ then $x \sim x_a$ for some a and hence $x - x_a = r_k$ for some k and so $x \in \mathcal{N}_k$ and the second inclusion holds since each \mathcal{N}_k is contained in [-1, 2] by construction

STEP 4: Conclusion

If each \mathcal{N} were measurable, then so would \mathcal{N}_k for all k (by translation) and since the union $\bigcup_{k=1}^{\infty} \mathcal{N}_k$ is disjoint, the above would imply:

$$m([0,1]) \le m\left(\bigcup_{k=1}^{\infty} \mathcal{N}_k\right) \le m([-1,2])$$
$$1 \le \sum_{k=1}^{\infty} m(\mathcal{N}_k) \le 3$$

Since \mathcal{N}_k is a translate of \mathcal{N} , we have $m(\mathcal{N}_k) = m(\mathcal{N})$ and hence

$$1 \le \sum_{k=1}^{\infty} m(\mathcal{N}) \le 3$$

Hence a contradiction, since neither $m(\mathcal{N}) = 0$ or $m(\mathcal{N}) > 0$ holds \Box

Problem 2:

Part (a): Since $E \subset F$, we can write F as the disjoint union of E and $F \setminus E$. Therefore by additivity of measure

$$\mu(E) + \mu(F \setminus E) = \mu(F)$$

By nonnegativity of measure, $\mu(F \setminus E) \ge 0$, so $\mu(E) \le \mu(F)$. Also, if $\mu(E) < \infty$, we can subtract it from both sides to get $\mu(F \setminus E) = \mu(F) - \mu(E)$.

Part (b): For each n, let

$$F_n = E_n \setminus \bigcup_{m < n} E_m.$$

Then the F_n are disjoint and measurable and their union is the same as the union of the E_n . Also, $F_n \subset E_n$, so $\mu(F_n) \leq \mu(E_n)$. Therefore, using countable additivity of measure,

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \sum_{n=1}^{\infty} \mu(F_n) \le \sum_{n=1}^{\infty} \mu(E_n).$$

Part (c): For each $n \ge 2$, let $F_n = E_n \setminus E_{n-1}$, and let $F_1 = E_1$. Then the F_n are disjoint and measurable and their union is the same as the union of the E_n . Also, each E_n is the disjoint union of the F_m for $m \le n$, so

$$\mu(E_n) = \sum_{m=1}^n \mu(F_n);$$

furthermore, the union of all the E_n is the same as the union of all the F_n . Therefore, applying countable additivity of measure,

$$\lim_{n \to \infty} \mu(E_n) = \sum_{n=1}^{\infty} \mu(F_n) = \mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right).$$

Part (d): Let $F_n = E_1 \setminus E_n$, so the F_n are an increasing sequence of sets and thus the previous part implies

$$\lim_{n \to \infty} \mu(F_n) = \mu\left(\bigcup_{n=1}^{\infty} F_n\right).$$

Since $\mu(E_n) \leq \mu(E_1) < \infty$, we have $\mu(F_n) = \mu(E_1) - \mu(E_n)$ by part (a). Now consider the right hand side: the union of all the F_n is E_1 minus the intersection of all the E_n , which is contained in E_1 and thus has finite measure. Applying part (a) again,

$$\mu\left(\bigcup_{n=1}^{\infty}F_n\right) = \mu(E_1) - \mu\left(\bigcap_{n=1}^{\infty}E_n\right).$$

Therefore,

$$\lim_{n \to \infty} \left(\mu(E_1) - \mu(E_n) \right) = \mu(E_1) - \mu\left(\bigcap_{n=1}^{\infty} E_n\right)$$

Since $\mu(E_1) < \infty$, we can subtract it from both sides and conclude

$$\lim_{n \to \infty} \mu(E_n) = \mu\left(\bigcap_{n=1}^{\infty} E_n\right).$$

Problem 3:

Part (a): We can write E as

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

This will imply E is measurable.

For the inclusion in the direction \subset , note $x \in E$ means there are infinitely many k for which $x \in E_k$. Thus for any n, there is some $k \ge n$ such that $x \in E_k$. It follows

$$x \in \bigcup_{k=n}^{\infty} E_k$$

for all n, establishing the \subset inclusion.

For the other inclusion (in the direction \supset), suppose

$$x \notin \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

Then there is some n for which $x \notin E_k$ for any $k \ge n$. Thus $x \in E_k$ for at most n values k, so $x \notin E$.

Part (b): Define

$$F_n = \bigcup_{k=n}^{\infty} E_k.$$

Then the F_n are non-increasing. Since by problem 2(b)

$$\mu(F_1) = \mu\left(\bigcup_{k=1}^{\infty} E_k\right) \le \sum_{k=1}^{\infty} \mu(E_k) < \infty,$$

we can apply problem 2(d) to conclude

$$\lim_{n \to \infty} \mu(F_n) = \mu\left(\bigcap_{n=1}^{\infty} F_n\right) = \mu(E).$$

So all that remains is to show $\mu(F_n) \to 0$. Applying problem 2(b) again, we have

$$\mu(F_n) = \mu\left(\bigcup_{k=n}^{\infty} E_k\right) \le \sum_{k=n}^{\infty} \mu(E_k)$$

By assumption, $\sum_{k=1}^{n} \mu(E_k)$ approaches a finite limit $\sum_{k=1}^{\infty} \mu(E_k)$ as $n \to \infty$. Thus

$$\sum_{k=n}^{\infty} \mu(E_k) = \sum_{k=1}^{\infty} \mu(E_k) - \sum_{k=1}^{n-1} \mu(E_k) \to 0$$

as $n \to \infty$, and we are done.

Problem 4:

Part (a):

For f + g: Let $\alpha \in \mathbb{R}$. For any real u, v with $u + v > \alpha$, there exists rational $q \in (\alpha - v, u)$. Thus

$$(f+g)^{-1}((\alpha,\infty)) = \{x : f(x) + g(x) > \alpha\}$$
$$= \bigcup_{q \in \mathbb{Q}} \{x : f(x) > q > \alpha - g(x)\}$$
$$= \bigcup_{q \in \mathbb{Q}} (f^{-1}((q,\infty)) \cap g^{-1}((\alpha - q,\infty))),$$

which is measurable; hence f + g is measurable.

For fg: Since continuous functions are Borel measurable and compositions of measurable functions are measurable, together with part (a) we have that $(f-g)^2$ and $(f+g)^2$ are measurable. Writing

$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$$

and applying part (a), we conclude fg is measurable.

Part (b):

For $\max\{f, g\}$: Let $\alpha \in \mathbb{R}$. Note $\max\{f(x), g(x)\} > \alpha$ if and only if either $f(x) > \alpha$ or $g(x) > \alpha$. We therefore have

$$(\max\{f,g\})^{-1}((\alpha,\infty)) = f^{-1}((\alpha,\infty)) \cup g^{-1}((\alpha,\infty)),$$

which is measurable; hence $\max\{f, g\}$ is measurable.

For $\min\{f, g\}$: Write $\min\{f, g\} = -\max\{-f, -g\}$, so measurability follows from the above.

Part (c):

For $\sup_n f_n$: Let $\alpha \in \mathbb{R}$. Note $\sup_n f_n(x) > \alpha$ if and only if $f_n(x) > \alpha$ for some *n*. Thus

$$(\sup_{n} f_n)^{-1}((\alpha, \infty)) = \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha, \infty)),$$

which is measurable; hence $\sup_n f_n$ is measurable.

For $\inf_n f_n$: Write $\inf_n f_n = -\sup_n (-f_n)$, so measurability follows from the above.

Part (d):

For $\limsup_n f_n$: Note $\limsup_n f_n = \inf_n \sup_{k \ge n} f_k$, so measurability follows from part (b).

For $\liminf_n f_n$: Analogously, note $\liminf_n f_n = \sup_n \inf_{k \ge n} f_k$, so measurability follows from part (b).

Part (e):

For $\lim_{n} f_n$ (if it exists): When $\lim_{n} f_n$ exists, it is the same as $\limsup_{n} f_n$ (or $\liminf_{n} f_n$), which we have already showed is measurable.

Problem 5: Let \mathcal{N} be the non-measurable subset from the first problem.

Given $a \in \mathcal{N}$ define

$$f_a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{if } x \neq a \end{cases}$$

Then each f_a is measurable but

$$f =: \sup_{a \in \mathcal{N}} f_a = \chi_{\mathcal{N}}$$

Which is not measurable since $\left\{\frac{1}{2} \leq f \leq 2\right\} = \mathcal{N}$ which is not measurable

Problem 6: Here $\{f_n(x)\}$ is Cauchy, meaning for every k there is N such that if $m, n \ge N$ then $|f_m(x) - f_n(x)| < \frac{1}{k}$

Hence the set in question can be written as

$$\bigcap_{k=1}^{\infty}\bigcup_{N=1}^{\infty}\bigcap_{m,n=N}^{\infty}\left\{x \text{ such that } |f_m(x) - f_n(x)| < \frac{1}{k}\right\}$$

And therefore we're done because the union/intersection of measurable sets is measurable

Problem 7:

Let \mathcal{N} be the non-measurable set from the first problem, and let $\mathcal{N}^c = [0,1] \setminus \mathcal{N}$. Then $m_*(\mathcal{N} \cup \mathcal{N}^c) = m_*([0,1]) = 1$, and $m_*(\mathcal{N}) > 0$ (since \mathcal{N} is non-measurable), so all we need to show is that $m_*(\mathcal{N}^c) = 1$.

Assume, for the sake of contradiction, that $m_*(\mathcal{N}^c) < 1$. Then there is $\epsilon > 0$ and a measurable set $U \subset [0,1]$ containing \mathcal{N}^c such that $m_*(U) < 1 - \epsilon$. Note $U^c \subset \mathcal{N}$, and thus (since U^c is measurable) $m_*(U^c) > \epsilon$.

Consider $U^c + r_k$, where $\{r_k\}_{k=1}^{\infty}$ is the enumeration of the rationals on [-1, 1] from problem 1. We have

$$\bigcup_{k=1}^{\infty} (U^c + r_k) \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1, 2].$$

But the $U^c + r_k$ are measurable and disjoint (since $U^c + r_k \subset \mathcal{N}_k$, and the \mathcal{N}_k are disjoint), and each has measure at least ϵ , so the measure of the set on the left is infinite. This contradicts the fact that [-1, 2]has measure 3; we conclude $m_*(\mathcal{N}^c) = 1$.