HOMEWORK 9 - SOLUTIONS

Problem 1:

STEP 1: Define the following equivalence relation on $[0,1]$:

$$
x \sim y \Leftrightarrow x-y \text { is rational }
$$

Using \sim we can partition $[0,1]$ into equivalence classes, that is we can write $[0,1]$ as a disjoint union

$$
[0,1]=\bigcup_{a \in[0,1]}[a]
$$

Where $[a]=\{x \mid x \sim a\}$
STEP 2: For every equivalence class [a], choose exactly one element x_{a} from each equivalence class, and let

$$
\mathcal{N}=\left\{x_{a}\right\}
$$

(This "choosing" step requires the axiom of choice)
STEP 3: \mathcal{N} is not measurable.
By contradiction, suppose \mathcal{N} is measurable.
Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be an enumeration of all the rationals in $[-1,1]$ and consider the translates

$$
\mathcal{N}_{k}=: \mathcal{N}+r_{k}
$$

We claim that \mathcal{N}_{k} are disjoint and

$$
[0,1] \subseteq \bigcup_{k=1}^{\infty} \mathcal{N}_{k} \subseteq[-1,2]
$$

Disjoint: Suppose $\mathcal{N}_{k} \cap \mathcal{N}_{p} \neq \emptyset$. Then there are rationals $r_{k} \neq r_{p}$ and a and b such that $x_{a}+r_{k}=x_{b}+r_{p}$ but then $x_{a}-x_{b}=r_{p}-r_{k} \in \mathbb{Q}$ and hence $x_{a} \sim x_{b}$ which contradicts the fact that we chose exactly one element from each equivalence class

Inclusions: If $x \in[0,1]$ then $x \sim x_{a}$ for some a and hence $x-x_{a}=r_{k}$ for some k and so $x \in \mathcal{N}_{k}$ and the second inclusion holds since each \mathcal{N}_{k} is contained in $[-1,2]$ by construction

STEP 4: Conclusion

If each \mathcal{N} were measurable, then so would \mathcal{N}_{k} for all k (by translation) and since the union $\bigcup_{k=1}^{\infty} \mathcal{N}_{k}$ is disjoint, the above would imply:

$$
\begin{aligned}
m([0,1]) & \leq m\left(\bigcup_{k=1}^{\infty} \mathcal{N}_{k}\right) \leq m([-1,2]) \\
1 & \leq \sum_{k=1}^{\infty} m\left(\mathcal{N}_{k}\right) \leq 3
\end{aligned}
$$

Since \mathcal{N}_{k} is a translate of \mathcal{N}, we have $m\left(\mathcal{N}_{k}\right)=m(\mathcal{N})$ and hence

$$
1 \leq \sum_{k=1}^{\infty} m(\mathcal{N}) \leq 3
$$

Hence a contradiction, since neither $m(\mathcal{N})=0$ or $m(\mathcal{N})>0$ holds

Problem 2:

Part (a): Since $E \subset F$, we can write F as the disjoint union of E and $F \backslash E$. Therefore by additivity of measure

$$
\mu(E)+\mu(F \backslash E)=\mu(F)
$$

By nonnegativity of measure, $\mu(F \backslash E) \geq 0$, so $\mu(E) \leq \mu(F)$. Also, if $\mu(E)<\infty$, we can subtract it from both sides to get $\mu(F \backslash E)=$ $\mu(F)-\mu(E)$.

Part (b): For each n, let

$$
F_{n}=E_{n} \backslash \bigcup_{m<n} E_{m}
$$

Then the F_{n} are disjoint and measurable and their union is the same as the union of the E_{n}. Also, $F_{n} \subset E_{n}$, so $\mu\left(F_{n}\right) \leq \mu\left(E_{n}\right)$. Therefore, using countable additivity of measure,

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\sum_{n=1}^{\infty} \mu\left(F_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right) .
$$

Part (c): For each $n \geq 2$, let $F_{n}=E_{n} \backslash E_{n-1}$, and let $F_{1}=E_{1}$. Then the F_{n} are disjoint and measurable and their union is the same as the union of the E_{n}. Also, each E_{n} is the disjoint union of the F_{m} for $m \leq n$, so

$$
\mu\left(E_{n}\right)=\sum_{m=1}^{n} \mu\left(F_{n}\right)
$$

furthermore, the union of all the E_{n} is the same as the union of all the F_{n}. Therefore, applying countable additivity of measure,

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(F_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) .
$$

Part (d): Let $F_{n}=E_{1} \backslash E_{n}$, so the F_{n} are an increasing sequence of sets and thus the previous part implies

$$
\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right) .
$$

Since $\mu\left(E_{n}\right) \leq \mu\left(E_{1}\right)<\infty$, we have $\mu\left(F_{n}\right)=\mu\left(E_{1}\right)-\mu\left(E_{n}\right)$ by part (a). Now consider the right hand side: the union of all the F_{n} is E_{1} minus the intersection of all the E_{n}, which is contained in E_{1} and thus has finite measure. Applying part (a) again,

$$
\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\mu\left(E_{1}\right)-\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right) .
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left(\mu\left(E_{1}\right)-\mu\left(E_{n}\right)\right)=\mu\left(E_{1}\right)-\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right) .
$$

Since $\mu\left(E_{1}\right)<\infty$, we can subtract it from both sides and conclude

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right) .
$$

Problem 3:

Part (a): We can write E as

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k} .
$$

This will imply E is measurable.

For the inclusion in the direction \subset, note $x \in E$ means there are infinitely many k for which $x \in E_{k}$. Thus for any n, there is some $k \geq n$ such that $x \in E_{k}$. It follows

$$
x \in \bigcup_{k=n}^{\infty} E_{k}
$$

for all n, establishing the \subset inclusion.
For the other inclusion (in the direction \supset), suppose

$$
x \notin \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k} .
$$

Then there is some n for which $x \notin E_{k}$ for any $k \geq n$. Thus $x \in E_{k}$ for at most n values k, so $x \notin E$.

Part (b): Define

$$
F_{n}=\bigcup_{k=n}^{\infty} E_{k}
$$

Then the F_{n} are non-increasing. Since by problem 2(b)

$$
\mu\left(F_{1}\right)=\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(E_{k}\right)<\infty
$$

we can apply problem 2(d) to conclude

$$
\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} F_{n}\right)=\mu(E) .
$$

So all that remains is to show $\mu\left(F_{n}\right) \rightarrow 0$. Applying problem 2(b) again, we have

$$
\mu\left(F_{n}\right)=\mu\left(\bigcup_{k=n}^{\infty} E_{k}\right) \leq \sum_{k=n}^{\infty} \mu\left(E_{k}\right)
$$

By assumption, $\sum_{k=1}^{n} \mu\left(E_{k}\right)$ approaches a finite limit $\sum_{k=1}^{\infty} \mu\left(E_{k}\right)$ as $n \rightarrow \infty$. Thus

$$
\sum_{k=n}^{\infty} \mu\left(E_{k}\right)=\sum_{k=1}^{\infty} \mu\left(E_{k}\right)-\sum_{k=1}^{n-1} \mu\left(E_{k}\right) \rightarrow 0
$$

as $n \rightarrow \infty$, and we are done.

Problem 4:

Part (a):
For $f+g$: Let $\alpha \in \mathbb{R}$. For any real u, v with $u+v>\alpha$, there exists rational $q \in(\alpha-v, u)$. Thus

$$
\begin{aligned}
(f+g)^{-1}((\alpha, \infty)) & =\{x: f(x)+g(x)>\alpha\} \\
& =\bigcup_{q \in \mathbb{Q}}\{x: f(x)>q>\alpha-g(x)\} \\
& =\bigcup_{q \in \mathbb{Q}}\left(f^{-1}((q, \infty)) \cap g^{-1}((\alpha-q, \infty))\right),
\end{aligned}
$$

which is measurable; hence $f+g$ is measurable.
For $f g$: Since continuous functions are Borel measurable and compositions of measurable functions are measurable, together with part (a) we have that $(f-g)^{2}$ and $(f+g)^{2}$ are measurable. Writing

$$
f g=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)
$$

and applying part (a), we conclude $f g$ is measurable.

Part (b):

For $\max \{f, g\}:$ Let $\alpha \in \mathbb{R}$. Note $\max \{f(x), g(x)\}>\alpha$ if and only if either $f(x)>\alpha$ or $g(x)>\alpha$. We therefore have

$$
(\max \{f, g\})^{-1}((\alpha, \infty))=f^{-1}((\alpha, \infty)) \cup g^{-1}((\alpha, \infty))
$$

which is measurable; hence $\max \{f, g\}$ is measurable.
For $\min \{f, g\}$: Write $\min \{f, g\}=-\max \{-f,-g\}$, so measurability follows from the above.

Part (c):
For $\sup _{n} f_{n}$: Let $\alpha \in \mathbb{R}$. Note $\sup _{n} f_{n}(x)>\alpha$ if and only if $f_{n}(x)>\alpha$ for some n. Thus

$$
\left(\sup _{n} f_{n}\right)^{-1}((\alpha, \infty))=\bigcup_{n=1}^{\infty} f_{n}^{-1}((\alpha, \infty))
$$

which is measurable; hence $\sup _{n} f_{n}$ is measurable.
For $\inf _{n} f_{n}:$ Write $_{\inf }^{n} f_{n}=-\sup _{n}\left(-f_{n}\right)$, so measurability follows from the above.

Part (d):
For $\lim \sup _{n} f_{n}:$ Note $\lim \sup _{n} f_{n}=\inf _{n} \sup _{k \geq n} f_{k}$, so measurability follows from part (b).

For $\lim \inf _{n} f_{n}$: Analogously, note $\liminf { }_{n} f_{n}=\sup _{n} \inf _{k \geq n} f_{k}$, so measurability follows from part (b).

Part (e):
For $\lim _{n} f_{n}$ (if it exists): When $\lim _{n} f_{n}$ exists, it is the same as $\lim \sup _{n} f_{n}$ (or $\liminf _{n} f_{n}$), which we have already showed is measurable.

Problem 5: Let \mathcal{N} be the non-measurable subset from the first problem.

Given $a \in \mathcal{N}$ define

$$
f_{a}(x)= \begin{cases}1 & \text { if } x=a \\ 0 & \text { if } x \neq a\end{cases}
$$

Then each f_{a} is measurable but

$$
f=: \sup _{a \in \mathcal{N}} f_{a}=\chi_{\mathcal{N}}
$$

Which is not measurable since $\left\{\frac{1}{2} \leq f \leq 2\right\}=\mathcal{N}$ which is not measurable

Problem 6: Here $\left\{f_{n}(x)\right\}$ is Cauchy, meaning for every k there is N such that if $m, n \geq N$ then $\left|f_{m}(x)-f_{n}(x)\right|<\frac{1}{k}$

Hence the set in question can be written as

$$
\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{m, n=N}^{\infty}\left\{x \text { such that }\left|f_{m}(x)-f_{n}(x)\right|<\frac{1}{k}\right\}
$$

And therefore we're done because the union/intersection of measurable sets is measurable

Problem 7:

Let \mathcal{N} be the non-measurable set from the first problem, and let $\mathcal{N}^{c}=[0,1] \backslash \mathcal{N}$. Then $m_{*}\left(\mathcal{N} \cup \mathcal{N}^{c}\right)=m_{*}([0,1])=1$, and $m_{*}(\mathcal{N})>0$ (since \mathcal{N} is non-measurable), so all we need to show is that $m_{*}\left(\mathcal{N}^{c}\right)=1$.

Assume, for the sake of contradiction, that $m_{*}\left(\mathcal{N}^{c}\right)<1$. Then there is $\epsilon>0$ and a measurable set $U \subset[0,1]$ containing \mathcal{N}^{c} such that $m_{*}(U)<1-\epsilon$. Note $U^{c} \subset \mathcal{N}$, and thus (since U^{c} is measurable) $m_{*}\left(U^{c}\right)>\epsilon$.

Consider $U^{c}+r_{k}$, where $\left\{r_{k}\right\}_{k=1}^{\infty}$ is the enumeration of the rationals on $[-1,1]$ from problem 1 . We have

$$
\bigcup_{k=1}^{\infty}\left(U^{c}+r_{k}\right) \subset \bigcup_{k=1}^{\infty} \mathcal{N}_{k} \subset[-1,2]
$$

But the $U^{c}+r_{k}$ are measurable and disjoint (since $U^{c}+r_{k} \subset \mathcal{N}_{k}$, and the \mathcal{N}_{k} are disjoint), and each has measure at least ϵ, so the measure of the set on the left is infinite. This contradicts the fact that $[-1,2]$ has measure 3 ; we conclude $m_{*}\left(\mathcal{N}^{c}\right)=1$.

