ANALYSIS - HOMEWORK 9

Problem 1: A non-measurable set

In this problem, we will construct a non-measurable set on \mathbb{R}
Define the following equivalence relation on $[0,1]$

$$
x \sim y \Leftrightarrow x-y \text { is rational }
$$

Using \sim we can partition $[0,1]$ into equivalence classes, that is we can write $[0,1]$ as a disjoint union

$$
[0,1]=\bigcup_{a \in[0,1]}[a]
$$

Where $[a]=\{x \mid x \sim a\}$
For each equivalence class [a] choose exactly one element x_{a} from each equivalence class

$$
\mathcal{N}=\left\{x_{a}\right\}
$$

(This choosing step requires the axiom of choice)
Problem: Show that \mathcal{N} is not measurable
Hint: Consider the translates $\mathcal{N}_{k}=: \mathcal{N}+r_{k}$ where r_{k} is an enumeration of all the rationals in $[-1,1]$ and show

$$
[0,1] \subseteq \bigcup_{k=1}^{\infty} \mathcal{N}_{k} \subseteq[-1,2]
$$

Problem 2: Let X be a set, and μ a measure defined on a σ-algebra \mathcal{M}. Prove the following facts
(a) If $E \subset F, \mu(E) \leq \mu(F)$. In addition, if $\mu(E)<\infty$, then $\mu(F \backslash E)=\mu(F)-\mu(E)$.
(b) For any sequence of sets $\left\{E_{n}\right\}$

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right)
$$

(c) If $\left\{E_{n}\right\}$ is an increasing sequence of nested sets, i.e. $E_{n} \subset E_{n+1}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

(d) If $\left\{E_{n}\right\}$ is an decreasing sequence of nested sets, i.e. $E_{n} \supset E_{n+1}$, and $\mu\left(E_{1}\right)<\infty$, then

$$
\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

Problem 3: [The Borel-Cantelli Lemma] Suppose $\left\{E_{k}\right\}$ is a countable family of measurable subsets of \mathbb{R} and that

$$
\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty
$$

Define $E=\left\{x \in \mathbb{R} \mid x \in E_{k}\right.$ for infinitely many $\left.k\right\}$
(a) Show that E is measurable
(b) Show $m(E)=0$

Problem 4: Let f, g and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be measurable functions from (X, \mathcal{M}) to \mathbb{R}. Show that the following are measurable
(a) $f+g$ and $f g$
(b) $\max (f, g)$ and $\min (f, g)$
(c) $\sup _{n} f_{n}(x)$ and $\inf _{n} f_{n}(x)$
(d) $\lim \sup _{n \rightarrow \infty} f_{n}(x)$ and $\liminf _{n \rightarrow \infty} f_{n}(x)$.
(e) $\lim _{n \rightarrow \infty} f_{n}(x)$, provided the limit exists.

Problem 5: Show that the supremum of an uncountable family of measurable functions might not be measurable.

Problem 6: If $\left\{f_{n}\right\}$ is a sequence of measurable functions, show that the set of points x at which $\left\{f_{n}(x)\right\}$ converges is measurable.

Problem 7: Find two subsets E_{1} and E_{2} of \mathbb{R} such that

$$
m_{\star}\left(E_{1} \cup E_{2}\right) \neq m_{\star}\left(E_{1}\right)+m_{\star}\left(E_{2}\right)
$$

Hint: Let $E_{1}=\mathcal{N}$ as in the first problem and $E_{2}=\mathcal{N}^{c}=[0,1] \backslash \mathcal{N}$
Show by contradiction that $m_{\star}\left(\mathcal{N}^{c}\right)=1$. You're allowed to assume that in this case for all $\epsilon>0$ there is $U \subseteq[0,1]$ measurable such that $\mathcal{N}^{c} \subseteq U$ and $m_{\star}(U)<1-\epsilon$. The translates \mathcal{N}_{k} (as in the first problem) prove useful here.

