
LECTURE: METRIC SPACES AND TOPOLOGY

Today: We’ll go over some useful notions in topology such as metric
spaces, convergence, and open/closed sets.

1. Metric Spaces

Video: Metric Spaces

A metric space is a nonempty set, together with a function called a
metric, which measures the distance between any pair of points in the
set.

Definition:

Let X be an arbitrary set. A function d : X×X → R is a metric
on X if the following conditions hold for all x, y, z ∈ X

(1) d(x, y) ≥ 0

(2) d(x, y) = 0 ⇔ x = y

(3) d(x, y) = d(y, x)

(4) d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

We call the pair (X, d) a metric space.

(4) is called the triangle inequality and generalizes the notion from
geometry that says: “The length of a side of a triangle must be less
than or equal to the sum of the lengths of the other two sides.”

1

https://youtu.be/tIGWpmTlC38
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From the triangle inequality, we can derive the

Reverse Triangle Inequality

d(x, z) ≥ |d(x, y)− d(y, z)|

This generalizes that “The length of a side of a triangle must be greater
than or equal to the difference of the lengths of the other two sides.”

From now on, assume that we are working in a metric space (X, d)

2. Examples
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Example 1:

The Euclidean distance on Rn is defined by

d(x, y) = |x− y|

More precisely, if x = (x1, . . . xn) and y = (y1, . . . , yn), then

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

Example 2:

The discrete metric on any set X is defined by

d(x, y) =

{
0 if x = y

1 otherwise

In other words, with the metric d, all the points in X are distance 1
apart. Freaky, isn’t it? But it’s a great source of counterexamples!



4 LECTURE: METRIC SPACES AND TOPOLOGY

Note: The discrete metric seems weird for R, but is more natural in
other examples: If X = {1, 2, 3} with the discrete metric. Then X is
just an equilateral triangle!



LECTURE: METRIC SPACES AND TOPOLOGY 5

Example 3: Three metrics on R2

If x = (x1, x2) and y = (y1, y2) then

(1) Manhattan distance / taxicab metric / ℓ1 metric:

d1(x, y) = |x1 − y1|+ |x2 − y2|

(2) Euclidean distance / ℓ2 metric:

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

(3) Maximum distance / chessboard metric / ℓ∞ metric:

d∞(x, y) = max{|x1 − y1|, |x2 − y2|}
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Note: d1 s called the taxicab metric because taxicabs in New York
can’t just go diagonally from (x1, x2) to (y1, y2) without crashing into
buildings, they have to go right, and then up.

Example 4:

Let C([a, b]) be the space of cont. R-valued functions on [a, b]

Then the sup metric on C([a, b]) is defined by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|

Note: Since a continuous function attains its maximum and minimum
on a closed interval (extreme value theorem), this is well-defined.
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Example 5: Integral Metrics

Let X = C[a, b] then the following are metrics on X

d(f, g) =

∫ b

a

|f(x)− g(x)| dx

d(f, g) =

√∫ b

a

|f(x)− g(x)|2 dx

Those are very natural on X if you remember that an integral is just
a sum. The second one is nice because X becomes a Hilbert space.

Example 6: Distance between sets

If A and B are two subsets of R (or of any metric space), then

d(A,B) = inf {|a− b| | a ∈ A, b ∈ B}
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Example 7: Information Theory

(1) Hamming Distance: Distance between two strings of
identical length: number of positions at which the two
strings are different.

d(0100, 0010) = 2

(2) Levenshtein Distance: Distance between two arbitrary
strings: minimum number of single-character edits (inser-
tions, deletions or substitutions) required to change one
string into the other.

d(0100, 0010) = 2

(3) Damerau-Levenshtein distance: Same as Levenshtein
distance, except swaps of adjacent characters are also al-
lowed operations.

d(0100, 0010) = 1
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Note: “More than 80% of all human misspellings can be expressed by
a single error of one of the four types” (Damerau, 1964).

Example 8: Geodesic Distance on Connected Graphs

The Number of edges in a shortest path connecting two vertices.

Here d(i, j) = 3

Note: There may not be a unique shortest path, but the geodesic
distance is unique. The graph needs to be connected for this to work.

Take-away: Everything we’re going to say about metric spaces holds
ALL the examples at once, so we’re really killing multiple birds with
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one stone! THIS is the power of abstract mathematics!

3. Product metrics

Here is a fun way of constructing new metrics from old ones

Definition:

If X and Y are metric spaces, then the Cartesian Product
X × Y is simply

X × Y = {(x, y) | x ∈ X, y ∈ Y }

Similarly if X1, · · · , Xn are metric spaces then

n∏
k=1

Xk = X1 × · · · ×Xn := {(x1, . . . , xn) : xk ∈ Xk}.

Take a finite sequence of metric spaces (X1, d1), . . . , (Xn, dn), poten-
tially equipped with different metrics. Then any of the following are
metrics on X1 × · · · ×Xn: We call these product metrics.
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Definition:

(1) d1(x, y) =
n∑

k=1

d(xk, yk)

(2) d2(x, y) =

√√√√ n∑
k=1

d(xk, yk)2

(3) d∞(x, y) = max
k=1,...,n

d(xk, yk)

The same thing works for countable products of metric spaces:

∞∏
k=1

Xk :=
{
{xk} : xk ∈ Xk

}
.

This is not as easy as before, since we are now dealing with infinite
sums and need to worry about points being a finite distance from each
other. Luckily we can use the following trick, which allows us to con-
struct metrics from other metrics:

Fact:

If f : [0,∞) → [0,∞) is an increasing concave function such that

f(x) = 0 ⇔ x = 0

Then f(d(x, y)) is also a metric.

Note that f does not have to be smooth. Important examples are:

f(x) = min {x, 1} or f(x) =
x

x+ 1
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Both of these functions “cut off” the metric at 1, so that the greatest
possible distance between any two points is 1.

We can use the second of these “cutoff” functions to define a metric
for a countable product of metric spaces {(Xk, dk)}:

Example:

d(x, y) =
∞∑
k=1

1

2k

(
dk(xk, yk)

1 + dk(xk, yk)

)

Note: There are many variations of this: We could alternatively use
the “cutoff” metric min{dk(xk, yk), 1}. And we can replace 1/2k with
any convergent series of positive terms.

4. Convergence

Video: Convergence in Rn

The neat thing about metric spaces is that it’s really easy to generalize
the notion of convergence to those spaces.

Definition:

If (xn) is a sequence in X, then xn → L if for all ϵ > 0 there is N
such that if n > N , then d(xn, L) < ϵ

https://youtu.be/cMmX-JiPMcU
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Related to this is the notion of a Cauchy sequence. Intuitively, a
sequence {xn} is a Cauchy sequence if its elements get arbitrarily close
to each other (rather than approach a limit).

Definition:

{xn} is a Cauchy sequence if for all ϵ > 0, there exists N ∈ N
such that d(xn, xm) < ϵ for all n,m ≥ N
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We sometimes abbreviate this as d(xm, xn) → 0. Every convergent
sequence is a Cauchy sequence, but not every Cauchy sequence is con-
vergent

Non-Example:

Take Q with d(x, y) = |x − y|, and consider the sequence {xn},
with x1 = 1 and

xn+1 =
xn
2

+
1

xn

This is a Cauchy sequence, but its limit is
√
2, which is not in Q,

so it doesn’t converge in Q
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Analogy: Just because you see a large crowd (Cauchy), it doesn’t
mean that the crowd is going somewhere (convergent)

Definition:

A metric space is complete if every Cauchy sequence converges

Hence Q with the above metric is not complete.

An example of a complete metric space is R (the completeness of R
follows from its construction). Using the product metric on Rn (the
maximum version of the metric is easiest here) and the completeness
of R, it follows that Rn is complete.

Note: Every metric space can be completed

Convergence Tests

Two ways to show a sequence {xn} converges.

(1) Use the definition of convergence to show that xn → L.
This means that we need a guess for what L.

(2) Work in a complete metric space, and show {xn} is a
Cauchy sequence. This is often easier, since we do not
need a guess for the limit, but it has the drawback of not
giving us the actual limit.

5. Open Sets

Video: Open Sets

https://youtu.be/WcxBy4cUzWo
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For this, we first need to define what an open ball is.

Definition:

The open ball centered at x and radius r is:

B(x, r) = {y ∈ S | d(x, y) < r}

That is, the set of points that are a distance of at most r away from x.

Note: You may see this written as Br(x) or Ur(x)

Using this, we can define the concept of an open set:

Definition:

A subset U ⊆ X is open if for all x ∈ U there is r > 0 such that
B(x, r) ⊆ U .
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In other words, for every point in U there is some tiny ball that is
contained in U .

Interpretation: For every point x in E, you can move around x a lit-
tle bit and still be in your set. So there is some wiggle room/breathing
room around every point.

This open ball property is so useful that we can give it a name

Definition:

x ∈ U is an interior point of U if B(x, r) ⊆ U for some r > 0.
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Note: It’s similar to the definition of open set except here we’re fixing
a point x. Before, this was true for all x.

Then a set U is open iff it consists entirely of interior points

6. Closed Sets

Video: Closed Sets

On the other side of the spectrum comes the notion of a closed set,
which has to do with limits of sequences.

https://youtu.be/YAfgVkh59Qo


LECTURE: METRIC SPACES AND TOPOLOGY 19

Definition:

K ⊆ X is closed if, whenever (xn) is a sequence in K that
converges to x, then x ∈ K

In other words, K must contain all the limits of all the sequences in it.

Non-Example:

(0, 1] is not closed

For instance, xn = 1
2n is a sequence in (0, 1] that converges to 0, but

0 /∈ (0, 1]

In some sense, you can escape (0, 1] by taking limits, like a prisoner
getting out of prison.
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Sometimes you will see closed sets defined in terms of limit points

Definition:

We say x is a limit point of K if there is a sequence (xn) in K
that converges to x.

Alternatively x is a limit point if for every ϵ > 0 B(x, ϵ) contains a
point in E (note that x may or may not be in E).

Non-Example:

0 is a limit point of (0, 1] because for all ϵ > 0, B(0, ϵ) = (−ϵ, ϵ)
contains points of (0, 1]. Notice 0 /∈ (0, 1]

Definition:

We a subset K ⊆ X is closed if it contains all of its limit points.

Basic Properties:

(1) K is closed if and only if X\K is open

(2) The union of any collection of open sets is open

(3) The intersection of finitely many open sets is also open

Warning: The intersection of infinitely open sets isn’t necessarily
open:
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Non-Example:

Consider Un =
(
− 1

n ,
1
n

)
in R

Then each Un is open, but the intersection of all Un is {0}, which
is not open.

It follows from (1) − (3) that arbitrary intersections of closed sets if
closed and finite unions of closed sets are closed.

Note: Topologists actually use those properties to define open sets!
More precisely

Definition:

A topology on a set X is a family T of subsets of X which
contains ∅ and X, is closed under arbitrary unions, and under
finite intersections. The sets in T is called the open sets.

7. Closure, Interior, and Boundary

Definition:

E = Set of limit points of E
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It is the smallest closed set containing E

Example:

If E = (0, 1], then E = [0, 1]

Think of it as the set of all possible destinations starting in E

Definition:

E◦ = Set of all interior points of E

It is the union of all open sets contained in E, as well as the largest
open set contained in E
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Example:

If E = [0, 1], then E◦ = (0, 1)

Because for any point other than 0 or 1, we can fit a ball inside [0, 1].

Fact:

E is open iff E = E◦

E is closed iff E = E

Definition:

The boundary ∂E of set E is the set of points x such that every
ball B(x, ϵ) contains at least one point of E and one point of X\E

Equivalently, it is defined as ∂E = E\E◦
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Think of the boundary as the edge of a cliff: You see both the cliff-part
and the sea-part

8. Equivalent Metrics

Sometimes it does not matter much what metric we use, i.e. different
metrics give us the same convergent sequences and the same open sets.

Definition:

Two metrics d1 and d2 on X are equivalent (or comparable) if
there exist constants C1 and C2 such that for all x, y ∈ X,

C1d1(x, y) ≤ d2(x, y) ≤ C2d1(x, y)
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Example:

Because of the following identity

max
k=1,...,n

|xk − yk| ≤
n∑

k=1

|xk − yk| ≤ n max
k=1,...,n

|xk − yk|

The Euclidean, taxicab, and maximum metrics in Rn are all
strongly equivalent.

If two metrics on X are equivalent, the open sets and convergent se-
quences of X are the same, so for our purposes they are pretty much
the same.
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