LECTURE: COMPACTNESS AND UNIFORM
CONVERGENCE

1. COMPACTNESS (CONTINUED)

Compact Equivalence Theorem:

Let (X, d) be a metric space with K C X. Then the following are
equivalent:

(1) K is covering compact.
(2) K is sequentially compact.

(3) K is complete and totally bounded.

Proof:
(1) = (2): Last time
(2) = (3): Suppose that K is sequentially compact.
First, we show that K is complete. Let {x,} be a Cauchy sequence
in K. By sequential compactness, {z,,} has a subsequence which con-
verges to ¥ € K.
Then x,, — =* because
d(zp, ") < d(zp, xp,) + d(Tp,, %) — 0

1



2 LECTURE: COMPACTNESS AND UNIFORM CONVERGENCE

As n, k — oo by Cauchiness and convergence, and so (z,) converges v’

Now suppose K is not totally bounded. Then there exists € > 0 such
that K cannot be covered by finitely many open balls B(x, €). Define a
sequence {z,} as follows. Start by choosing any x; € K. Then choose

9 € K\ B(x1,€)
x3 € K\ (B(21,€) U B(x3,€))
xg € K\ (B(21,€) U B(xg,€) U B(x3,¢))

In other words, each element x; in the sequence lies outside all of the
previous e-balls. This process never terminates, otherwise K could
in fact be covered by finitely many e-balls. By sequential compact-
ness, {x,} has a convergent subsequence, but this is impossible since

d(zj,zy) > € for all j # k.
(3) = (1): (will be skipped in class)
Suppose K is complete and totally bounded, but not covering compact.

Let {U,}aca be an open cover of K, and assume that there is no finite
subcover. We construct the following sequence of sets.

STEP 1: Take ¢ = 1/2. Since K is totally bounded, we can find
points yi, ... 79711(1) such that

n(1)

K c | B
k=1
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Since no finite subcover of {U,} covers K, no finite subcover can cover
at least one of the open balls B (yl{u, %)

We will call this “uncoverable” open ball the “bad ball”. Rearrange
the {y}} so that the“bad ball” is labeled B (y{,3). Let

1
B, =B <yi,§> NK.

Note that By cannot be covered by finitely many U,,.

STEP 2: Repeat this for e = 1/4. Again, since K is totally bounded,
we can find points yi, . .. ,yfw) such that

n(2) 1
Kc| By -
k=1
Since By cannot be covered by finitely many U,, no finite subcover can

cover at least one of the sets By N B (y3, i) Again, rearrange the {y?}
so that B (y%, %l) is the “bad ball”, and let

1
BzzBlmB<yf,Z).

Again, By cannot be covered by finitely many U,,.

STEP 3: Repeat this process with €, = 1/2" to get a nested sequence
of nonempty sets
K>B DByD>BsD...

such that B, C B (y?, 2%) for some yi € K, and none of the B, can

be covered by finitely many U,. We note that each set B, is contained
in a ball of radius 1/2".
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For each n € N, choose z, € B,. Since the sets {B,} are nested,
and each B, is contained in a ball of radius 1/2", {x,} is a Cauchy
sequence. Since K is complete, x, — z* € K. Furthermore, z* € B,
for all n € N.

Since {U,} covers K, z* € U,, for some «p. Since U,, is open and
the B, are nested, shrinking, and contain z*, B,, C U,, for sufficiently
large n, which contradicts the fact that no B,, can be covered by finitely
many Ul,. ]

As a corollary, closed subsets of compact sets are compact.

Let K be a compact subset of a metric space X. If A C K is
closed, then A is compact.

Proof: Let {z,} be a sequence in A. Then there is a subsequence
z,, — x¥ € K, since K is sequentially compact. Since A is closed,

e AV ]

Next, we show that compact subsets of metric spaces are closed.

Compact sets are closed and bounded

Proof: Let K be a compact subset of metric space X.
K bounded: This follows from total boundedness if you let € = 1

K closed: We will show that X \ K is open.
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Choose any z € X \ K, i.e. x ¢ K. For all y € K, let r(y) be the

distance r(y) = 3d(y,z) > 0, since y # x. The collection of open balls
{B(y,r(y))}yex is an open cover for K, and none of them contain x by

our definition of r(y). By compactness, we can find a finite subcover
{B(y1,7(11)) -, B(Yn,7(yn))} of K.

Let 7 = min{r(v1),...,7(yn)}. Then B(x,r) does not intersect this
finite subcover, which means that B(z,r) lies outside of K. It follows
that B(x,r) C X \ K, from which we conclude that X \ K is open. [

Heine-Borel Theorem:

A subset K C R" is compact <= K is closed and bounded.

Proof: ( =) Done above

( <) Since K is bounded, it fits inside a closed box B in R". Since
K is closed, and closed subsets of compact sets are compact, it suffices
to show that B is compact.

Since B is bounded, it follows from the Bolzano-Weierstrass theorem
that any sequence in B has a convergent subsequence, whose limit
must be in B since B is closed. v O

Next, we show that compactness is also a topological property, i.e. it
is preserved by continuous functions.

Let f: (X,d1) — (Y,dy) be continuous, and K compact in X.
Then f(K) is compact in Y. In other words, continuous images
of compact sets are compact.




6 LECTURE: COMPACTNESS AND UNIFORM CONVERGENCE

Proof: Let {U,}qca be an open cover of f(K).

Since f is continuous, f~(U,) is open in X, thus {f~}(U,)}aeca is an
open cover for K.

Since K is compact, we can find a finite subcover { f~1(U1), ..., f~1(U,)}
for K.

Sending the finite subcover back through f, {f(f~1(Uh)), ..., f(f~H(U))}
covers f(K).

Since f(f~Y(Uy)) C Uy, {U4,...,U,} is a finite subcover for f(K). O

The Extreme Value Theorem is a direct consequence of this.

Extreme Value Theorem:

Let f : (X,d) — R continuous and K C X compact. Then f
attains an absolute maximum and an absolute minimum on K.

Proof: Since K is compact, f(K) C R is compact, thus closed and
bounded by Heine-Borel. ]

A function f: (X, d;) — (Y, ds) is uniformly continuous if, for
every € > 0, there exists 4 > 0 such that whenever d;(z,y) < 6,

dy(f(z), f(y)) <e.

The main difference between uniform continuity and continuity is that,
0 depends only on €, not on x
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For simplicity, we will prove the uniform continuity theorem for real-
valued functions, although it same result holds (with the same proof)
for any pair of metric spaces.

Uniform Continuity Theorem:

Let f: (X,d) — R be continuous and let K C X compact. Then
f is uniformly continuous on K.

Proof 1: Let € > 0. Since f is continuous on K, for every g € K we
can find §(x) such that |f(z) — f(x0)| < €/2 whenever d(z, xy) < §(zq)

The collection of open balls {B (x, %x))} - is an open cover for K.
re

By compactness, we can find a finite subcover. In other words, we can
find points x1,..., 2, € K such that

K C B(x1,0(x1)/2)U---U B (xy,0(xy,)/2)

Let 0 = min{d(x1)/2,...,0(x,)/2} > 0. (We need this minimum to be
well-defined and positive, which is why we need compactness to give
us a finite subcover).

Choose any z,y € K with d(z,y) < 6. We will show that |f(x) —
fly)l <e

Because of the finite subcover, x must be inside one of the finite set of
open balls B (xy, 0(x1)/2). It follows that d(z,z)) < d(zx)/2 for some
ke{l,...,n}

Ay, 24) < d(y,) + d, 3) < 6+ 6(z) /2 < (),
since 0 < 0(xy)/2. Finally, by continuity of f,

[f(y) = F@)] < [f () = Fla)| + [f () = flo)] < 5 +

DN
DO | ™
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since both y and z are within a distance d(xy) of zy.
Proof 2: (Will be skipped) By contradiction: Suppose the conclu-
sion is not true. Then for a specific ¢ > 0, we can find sequences

{z,},{yn} C K such that d(z,,y,) — 0, but |f(z,) — f(y,)| > €.

Since K is compact, thus sequentially compact, {x,} has a convergent
subsequence x,, — x*, where x* € K, since K is closed.

Since d(x,,, yn) — 0, Yn, — = as well.

By the triangle inequality,

0 <e<|[f(en) = flyn)l < [f(@n) = SO+ 1) = fya)] =0,

both — 0 by continuity of f

which is a contradiction.

2. UNIFORM CONVERGENCE

Our next goal is to generalize compactness, but for functions. Namely,
given a sequence (f,) of functions, we would like to extract a conver-
gent subsequence (f,, ), if that’s even possible

fn — f pointwise if, for every x, we have

lim f,(z) = f(z)

n—oo
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Let f, : [0,1] — R defined by f,(x) = 2™. Then f, converges

pointwise to
0 fo<z<l
fl@) = {1 ifz=1

Notice the limit function here is discontinuous!

fn — f uniformly if for all € > 0 there is NV such that if n > N
then for all x, we have

|[fu(z) — flz)] <e

So for all large n, the graph of f,, is contained in an e-tube around the
graph of f.

Theorem: Continuity

If f, — f uniformly and each f,, is continuous at xy, then f is
continuous at xy.

Proof:ﬂ This is a typical g proof:

Let € > 0 and x( be given. We need to find § > 0 such that for all x,
if |x — xo| < 9 then |f(x) — f(xg)] < e.

STEP 1: Since f,, — f uniformly, there is N such that for all n > N
and all x, we have

IThis proof is taken from Pugh’s book, Chapter 4 Theorem 1
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Fule) = J(@)] < 5

STEP 2: Since fy is continuous at xy there is 6 > 0 such that
|z — x0| < § implies

fv(@) = f(ao)| <

STEP 3: With that 0, if |z — x| < §, we get

|f(x) = f(zo)| =|f(x) — fn(z) + fn(r) — fn(20) + fv(w0) — f(0)]
<|f(x) = fn(@)| + [fn(z) = fn(zo)| + | fa(20) — f(20)]
<z+s+s
—ev’

Here we used uniform convergence, continuity of fy, and uniform con-
vergence again, [l

Theorem: Integrals

If f, — f uniformly and each f,, is (Riemann) integrable on [a, b],
then so is f, and

/b f(z)dx = lim bfn(a:)d:v

n—0oo a
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Non-Example:

Consider f,, : [0,1] — R defined by

Then fol fo(x)dr =1 so lim, .o fu(z)dz =1

But f, — f = 0 pointwise (except at x = 0) and fol f(z)dx =0

11

Finally, let’s discuss differentiability, which is much more delicate!

Example:

Consider f, : [-1,1] — R defined by

pin = o

Then each f, is differentiable, but f, converges uniformly to
f(x) = |x|, which is not differentiable!

Theorem: Differentiability

(1) Suppose f, is differentiable on [a, b] and f,, — f uniformly

(2) Moreover, suppose f, — g uniformly for some function g

(3) Then in fact f is differentiable and f’' = g.
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Recall that Cla,b] is the set of continuous functions f : [a,b] — R,
usually equipped with the metric

d(f,9) = sup{[f(x) — g()],x € [a, 0]}

fn— fin Cla,b] < f, — f uniformly

(Cla, b],d) is complete

Proof
STEP 1: Let f, be a Cauchy sequence in Cla, b].
Claim: For every z, (f,(x)) is Cauchy (in R)

Why? Let € > 0 be given, then there is N such that if m,n > N then
d(fn, fm) < €. With that same N, if m,n > N then

() = fn(@)] < sup{[fu(2) = fn(2)], 2 € [0, 0]} = d(fn, fm) <€

STEP 2: Since (f,(x)) is Cauchy in R, it converges. So for every x,
it makes sense to define

f(a) = lim f(x)

n—oo

And, by definition, f, — f pointwise

STEP 3: Claim: f, — f uniformly

2This proof is taken from Pugh’s Real Analysis book, Theorem 3 in Chapter 4
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Why? Let € > 0 be given. Since (f,) is Cauchy, there is N such that
if m,n > N then

d(fr, frn) <

DN | ™

Take that N and let x be given

Since f, — f pointwise, we know there is some m (depending on z)
large enough such that |f,,(z) — f(x)| < 5 (think of it as a helper con-
stant)

Then, if n > N, we get

‘fn(x) - f(x)l < |fn(x) - fm(x)‘ + ‘fm(x) - f($)| < §+ g =c

Where we have used Cauchiness and our helper constant respectrively.

Finally f € Cla,b] since the uniform limit of continuous functions is
continuous O

3. EQUICONTINUITY

Question: Is B-W still true for functions? That is: if (f,,) is a bounded
sequence of functions, does it have a uniformly convergent subsequence

(fre)?

Unfortunately the answer is no ®

(See example from next time)
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That said, the answer is yes if we add an additional assumption which
is equicontinuity:

A sequence (f,) is (uniformly) equicontinuous if for all € > 0
there is § > 0 such that for all n and all z,y, if |z — y| < §, then

[ful@) — fuly)| <€

Equicontinuity just means that J doesn’t depend on n, it’s the same
for all n.
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