
LECTURE: COMPACTNESS AND UNIFORM
CONVERGENCE

1. Compactness (continued)

Compact Equivalence Theorem:

Let (X, d) be a metric space with K ⊂ X. Then the following are
equivalent:

(1) K is covering compact.

(2) K is sequentially compact.

(3) K is complete and totally bounded.

Proof:

(1) =⇒ (2): Last time

(2) =⇒ (3): Suppose that K is sequentially compact.

First, we show that K is complete. Let {xn} be a Cauchy sequence
in K. By sequential compactness, {xn} has a subsequence which con-
verges to x∗ ∈ K.

Then xn → x∗ because

d(xn, x
∗) ≤ d(xn, xnk

) + d(xnk
, x∗) → 0

1
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As n, k → ∞ by Cauchiness and convergence, and so (xn) converges ✓

Now suppose K is not totally bounded. Then there exists ϵ > 0 such
that K cannot be covered by finitely many open balls B(x, ϵ). Define a
sequence {xn} as follows. Start by choosing any x1 ∈ K. Then choose

x2 ∈ K \B(x1, ϵ)

x3 ∈ K \ (B(x1, ϵ) ∪B(x2, ϵ))

x3 ∈ K \ (B(x1, ϵ) ∪B(x2, ϵ) ∪B(x3, ϵ))
...

In other words, each element xk in the sequence lies outside all of the
previous ϵ-balls. This process never terminates, otherwise K could
in fact be covered by finitely many ϵ-balls. By sequential compact-
ness, {xn} has a convergent subsequence, but this is impossible since
d(xj, xk) ≥ ϵ for all j ̸= k.

(3) =⇒ (1): (will be skipped in class)

SupposeK is complete and totally bounded, but not covering compact.

Let {Uα}α∈A be an open cover of K, and assume that there is no finite
subcover. We construct the following sequence of sets.

STEP 1: Take ϵ1 = 1/2. Since K is totally bounded, we can find
points y11, . . . , y

1
n(1) such that

K ⊂
n(1)⋃
k=1

B1/2(y
1
k).
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Since no finite subcover of {Uα} covers K, no finite subcover can cover
at least one of the open balls B

(
y1k,

1
2

)
We will call this “uncoverable” open ball the “bad ball”. Rearrange

the {y1k} so that the“bad ball” is labeled B
(
y11,

1
2

)
. Let

B1 = B

(
y11,

1

2

)
∩K.

Note that B1 cannot be covered by finitely many Uα.

STEP 2: Repeat this for ϵ2 = 1/4. Again, since K is totally bounded,
we can find points y21, . . . , y

2
n(2) such that

K ⊂
n(2)⋃
k=1

B

(
y2k,

1

4

)
Since B1 cannot be covered by finitely many Uα, no finite subcover can
cover at least one of the sets B1∩B

(
y2k,

1
4

)
. Again, rearrange the {y2k}

so that B
(
y21,

1
4

)
is the “bad ball”, and let

B2 = B1 ∩B

(
y21,

1

4

)
.

Again, B2 cannot be covered by finitely many Uα.

STEP 3: Repeat this process with ϵn = 1/2n to get a nested sequence
of nonempty sets

K ⊃ B1 ⊃ B2 ⊃ B3 ⊃ . . .

such that Bn ⊂ B
(
yn1 ,

1
2n

)
for some yn1 ∈ K, and none of the Bn can

be covered by finitely many Uα. We note that each set Bn is contained
in a ball of radius 1/2n.
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For each n ∈ N, choose xn ∈ Bn. Since the sets {Bn} are nested,
and each Bn is contained in a ball of radius 1/2n, {xn} is a Cauchy
sequence. Since K is complete, xn → x∗ ∈ K. Furthermore, x∗ ∈ Bn

for all n ∈ N.

Since {Uα} covers K, x∗ ∈ Uα0
for some α0. Since Uα0

is open and
the Bn are nested, shrinking, and contain x∗, Bn ⊂ Uα0

for sufficiently
large n, which contradicts the fact that no Bn can be covered by finitely
many Uα. □

As a corollary, closed subsets of compact sets are compact.

Corollary:

Let K be a compact subset of a metric space X. If A ⊂ K is
closed, then A is compact.

Proof: Let {xn} be a sequence in A. Then there is a subsequence
xnk

→ x∗ ∈ K, since K is sequentially compact. Since A is closed,
x∗ ∈ A ✓ □

Next, we show that compact subsets of metric spaces are closed.

Fact:

Compact sets are closed and bounded

Proof: Let K be a compact subset of metric space X.

K bounded: This follows from total boundedness if you let ϵ = 1

K closed: We will show that X \K is open.
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Choose any x ∈ X \ K, i.e. x /∈ K. For all y ∈ K, let r(y) be the
distance r(y) = 1

2d(y, x) > 0, since y ̸= x. The collection of open balls
{B(y, r(y))}y∈K is an open cover for K, and none of them contain x by
our definition of r(y). By compactness, we can find a finite subcover
{B (y1, r(y1)) . . . , B (yn, r(yn))} of K.

Let r = min{r(y1), . . . , r(yn)}. Then B(x, r) does not intersect this
finite subcover, which means that B(x, r) lies outside of K. It follows
that B(x, r) ⊂ X \K, from which we conclude that X \K is open. □

Heine-Borel Theorem:

A subset K ⊂ Rn is compact ⇐⇒ K is closed and bounded.

Proof: ( =⇒ ) Done above

( ⇐= ) Since K is bounded, it fits inside a closed box B in Rn. Since
K is closed, and closed subsets of compact sets are compact, it suffices
to show that B is compact.

Since B is bounded, it follows from the Bolzano-Weierstrass theorem
that any sequence in B has a convergent subsequence, whose limit
must be in B since B is closed. ✓ □

Next, we show that compactness is also a topological property, i.e. it
is preserved by continuous functions.

Fact:

Let f : (X, d1) → (Y, d2) be continuous, and K compact in X.
Then f(K) is compact in Y . In other words, continuous images
of compact sets are compact.
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Proof: Let {Uα}α∈A be an open cover of f(K).

Since f is continuous, f−1(Uα) is open in X, thus {f−1(Uα)}α∈A is an
open cover for K.

SinceK is compact, we can find a finite subcover {f−1(U1), . . . , f
−1(Un)}

for K.

Sending the finite subcover back through f , {f(f−1(U1)), . . . , f(f
−1(Un))}

covers f(K).

Since f(f−1(Uk)) ⊂ Uk, {U1, . . . , Un} is a finite subcover for f(K). □

The Extreme Value Theorem is a direct consequence of this.

Extreme Value Theorem:

Let f : (X, d) → R continuous and K ⊂ X compact. Then f
attains an absolute maximum and an absolute minimum on K.

Proof: Since K is compact, f(K) ⊂ R is compact, thus closed and
bounded by Heine-Borel. □

Definition:

A function f : (X, d1) → (Y, d2) is uniformly continuous if, for
every ϵ > 0, there exists δ > 0 such that whenever d1(x, y) < δ,
d2(f(x), f(y)) < ϵ.

The main difference between uniform continuity and continuity is that,
δ depends only on ϵ, not on x
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For simplicity, we will prove the uniform continuity theorem for real-
valued functions, although it same result holds (with the same proof)
for any pair of metric spaces.

Uniform Continuity Theorem:

Let f : (X, d) → R be continuous and let K ⊂ X compact. Then
f is uniformly continuous on K.

Proof 1: Let ϵ > 0. Since f is continuous on K, for every x0 ∈ K we
can find δ(x0) such that |f(x)−f(x0)| < ϵ/2 whenever d(x, x0) < δ(x0)

The collection of open balls
{
B
(
x, δ(x)2

)}
x∈K

is an open cover for K.

By compactness, we can find a finite subcover. In other words, we can
find points x1, . . . , xn ∈ K such that

K ⊂ B (x1, δ(x1)/2) ∪ · · · ∪B (xn, δ(xn)/2)

Let δ = min{δ(x1)/2, . . . , δ(xn)/2} > 0. (We need this minimum to be
well-defined and positive, which is why we need compactness to give
us a finite subcover).

Choose any x, y ∈ K with d(x, y) < δ. We will show that |f(x) −
f(y)| < ϵ

Because of the finite subcover, x must be inside one of the finite set of
open balls B (xk, δ(xk)/2). It follows that d(x, xk) < δ(xk)/2 for some
k ∈ {1, . . . , n}

d(y, xk) ≤ d(y, x) + d(x, xk) < δ + δ(xk)/2 ≤ δ(xk),

since δ ≤ δ(xk)/2. Finally, by continuity of f ,

|f(y)− f(x)| ≤ |f(y)− f(xk)|+ |f(xk)− f(x)| ≤ ϵ

2
+

ϵ

2
= ϵ,
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since both y and x are within a distance δ(xk) of xk.

Proof 2: (Will be skipped) By contradiction: Suppose the conclu-
sion is not true. Then for a specific ϵ > 0, we can find sequences
{xn}, {yn} ⊂ K such that d(xn, yn) → 0, but |f(xn)− f(yn)| ≥ ϵ.

Since K is compact, thus sequentially compact, {xn} has a convergent
subsequence xnk

→ x∗, where x∗ ∈ K, since K is closed.

Since d(xn, yn) → 0, ynk
→ x∗ as well.

By the triangle inequality,

0 < ϵ ≤ |f(xnk
)− f(ynk

)| ≤ |f(xnk
)− f(x∗)|+ |f(x∗)− f(ynk

)|︸ ︷︷ ︸
both → 0 by continuity of f

→ 0,

which is a contradiction.

2. Uniform Convergence

Our next goal is to generalize compactness, but for functions. Namely,
given a sequence (fn) of functions, we would like to extract a conver-
gent subsequence (fnk

), if that’s even possible

Definition:

fn → f pointwise if, for every x, we have

lim
n→∞

fn(x) = f(x)
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Example:

Let fn : [0, 1] → R defined by fn(x) = xn. Then fn converges
pointwise to

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

Notice the limit function here is discontinuous!

Definition:

fn → f uniformly if for all ϵ > 0 there is N such that if n > N
then for all x, we have

|fn(x)− f(x)| < ϵ

So for all large n, the graph of fn is contained in an ϵ-tube around the
graph of f .

Theorem: Continuity

If fn → f uniformly and each fn is continuous at x0, then f is
continuous at x0.

Proof:1 This is a typical ϵ
3 proof:

Let ϵ > 0 and x0 be given. We need to find δ > 0 such that for all x,
if |x− x0| < δ then |f(x)− f(x0)| < ϵ.

STEP 1: Since fn → f uniformly, there is N such that for all n ≥ N
and all x, we have

1This proof is taken from Pugh’s book, Chapter 4 Theorem 1
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|fn(x)− f(x)| < ϵ

3

STEP 2: Since fN is continuous at x0 there is δ > 0 such that
|x− x0| < δ implies

|fN(x)− fN(x0)| <
ϵ

3

STEP 3: With that δ, if |x− x0| < δ, we get

|f(x)− f(x0)| = |f(x)− fN(x) + fN(x)− fN(x0) + fN(x0)− f(x0)|
≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
=ϵ✓

Here we used uniform convergence, continuity of fN , and uniform con-
vergence again, □

Theorem: Integrals

If fn → f uniformly and each fn is (Riemann) integrable on [a, b],
then so is f , and ∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx
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Non-Example:

Consider fn : [0, 1] → R defined by

fn(x) =

{
n if 0 ≤ x ≤ 1

n

0 if 1
n < x ≤ 1

Then
∫ 1

0 fn(x)dx = 1 so limn→∞ fn(x)dx = 1

But fn → f = 0 pointwise (except at x = 0) and
∫ 1

0 f(x)dx = 0

Finally, let’s discuss differentiability, which is much more delicate!

Example:

Consider fn : [−1, 1] → R defined by

fn(x) =

√
x2 +

1

n

Then each fn is differentiable, but fn converges uniformly to
f(x) = |x|, which is not differentiable!

Theorem: Differentiability

(1) Suppose fn is differentiable on [a, b] and fn → f uniformly

(2) Moreover, suppose f ′
n → g uniformly for some function g

(3) Then in fact f is differentiable and f ′ = g.
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Recall that C[a, b] is the set of continuous functions f : [a, b] → R,
usually equipped with the metric

d(f, g) = sup {|f(x)− g(x)| , x ∈ [a, b]}

Fact:

fn → f in C[a, b] ⇔ fn → f uniformly

Theorem:

(C[a, b], d) is complete

Proof:2

STEP 1: Let fn be a Cauchy sequence in C[a, b].

Claim: For every x, (fn(x)) is Cauchy (in R)

Why? Let ϵ > 0 be given, then there is N such that if m,n > N then
d(fn, fm) < ϵ. With that same N , if m,n > N then

|fn(x)− fm(x)| ≤ sup {|fn(x)− fm(x)| , x ∈ [a, b]} = d(fn, fm) < ϵ

STEP 2: Since (fn(x)) is Cauchy in R, it converges. So for every x,
it makes sense to define

f(x) =: lim
n→∞

fn(x)

And, by definition, fn → f pointwise

STEP 3: Claim: fn → f uniformly

2This proof is taken from Pugh’s Real Analysis book, Theorem 3 in Chapter 4
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Why? Let ϵ > 0 be given. Since (fn) is Cauchy, there is N such that
if m,n > N then

d(fn, fm) <
ϵ

2

Take that N and let x be given

Since fn → f pointwise, we know there is some m (depending on x)
large enough such that |fm(x)− f(x)| < ϵ

2 (think of it as a helper con-
stant)

Then, if n ≥ N , we get

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ϵ

2
+

ϵ

2
= ϵ

Where we have used Cauchiness and our helper constant respectrively.

Finally f ∈ C[a, b] since the uniform limit of continuous functions is
continuous □

3. Equicontinuity

Question: Is B-W still true for functions? That is: if (fn) is a bounded
sequence of functions, does it have a uniformly convergent subsequence
(fnk

)?

Unfortunately the answer is no /

(See example from next time)
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That said, the answer is yes if we add an additional assumption which
is equicontinuity:

Definition:

A sequence (fn) is (uniformly) equicontinuous if for all ϵ > 0
there is δ > 0 such that for all n and all x, y, if |x− y| < δ, then
|fn(x)− fn(y)| < ϵ

Equicontinuity just means that δ doesn’t depend on n, it’s the same
for all n.
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