
LECTURE: THE ARZELÀ-ASCOLI THEOREM

1. Equicontinuity

Question: Is B-W still true for functions? If (fn) is a bounded se-
quence of functions, does it have a uniformly conv subsequence (fnk

)?

Unfortunately the answer is no /

Definition:

(fn) is bounded if there is M such that for all n and x we have

|fn(x)| ≤ M

Non-Example:

Consider the sequence fn(x) = sin(nx) on [0, 2π]

Then |fn(x)| = |sin(nx)| ≤ 1, so fn is bounded.

Suppose fn had a uniformly conv subsequence fnk
→ f for some f .

Then lim
k→∞

sin(nkx)− sin(nk+1x) = f(x)− f(x) = 0

Squaring this, we get

lim
k→∞

(sin(nkx)− sin(nk+1x))
2 = 0

1
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Therefore

lim
k→∞

∫ 2π

0

(sin(nkx)− sin(nk+1x))
2 dx =

∫ 2π

0

lim
k→∞

(sin(nkx)− sin(nk+1x))
2︸ ︷︷ ︸

0

dx = 0

The passage of the limit inside the integral is justified by the Bounded
Convergence Theorem

However, if you actually calculate the integral using double angle for-
mulas, you get for all k

∫ 2π

0

(sin(nkx)− sin(nk+1x))
2 dx = 2π ↛ 0

Which is a contradiction

That said, the answer is YES if you add an additional hypothesis:

Definition:

A sequence (fn) is (uniformly) equicontinuous if for all ϵ > 0
there is δ > 0 such that for all n and all x, y, if |x− y| < δ, then
|fn(x)− fn(y)| < ϵ

Equicontinuity just means that δ doesn’t depend on n, it’s the same
for all n.

2. Arzelà-Ascoli Theorem

We are ready to state and prove the celebrated Arzelà-Ascoli Theorem:
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Arzelá-Ascoli Theorem:

If (fn) is a bounded and equicontinuous sequence in C[a, b], then
(fn) has a uniformly convergent subsequence.

Proof:1

STEP 1: Fix an enumeration {x1, x2, . . . } of all the rational numbers
in [a, b]

Consider fn(x1). This is a bounded sequence of real numbers since (fn)
is bounded, so by B-W, there is a convergent subsequence fnk

(x1)

Notation:

f0,k =fk original sequence

f1,k =fnk
subsequence

f2,k = sub-subsequence

fm,k = sub-sub... sequence

m is the “depth” of the sequence, and k is the term of the sequence

Since f1,k(x2) is bounded, there is a sub-subsequence f2,k such that
f2,k(x2) converges. Notice f2,k converges as x1 as well. So f2,k con-
verges at x1 and x2

That way we obtain a tower of subsequences

fn ⊇ f1,k ⊇ f2,k ⊇ . . .

1The proof is taken from this Wikipedia article, as well as from Theorem 14 in Chapter 4 of
Pugh’s book

https://en.wikipedia.org/wiki/Arzel%C3%A0%E2%80%93Ascoli_theorem
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Such that fm,k converges at x1, x2, . . . , xm

STEP 2: Consider the diagonal subsequence gm =: fm,m which is the
m-th term of the m-th subsequence.

By construction, gm converges at every rational point.

Claim: (gm) converges uniformly

Then we would be done because then (gm) is a subsequence of (fn)
that converges uniformly.

STEP 3:

Proof of Claim: We will show that (gm) is Cauchy.

Here is where equicontinuity kicks in:

Let ϵ > 0 be given.

By equicontinuity there is δ > 0 such that for all x, y and all m:

|x− y| < δ ⇒ |gm(x)− gm(y)| <
ϵ

3

Intuitively: Rational points are good (because gm converges on them)
and δ is good (because of continuity), it makes sense to cover [a, b] with
balls centered at rational points and radius δ:

Consider the balls (intervals) B(x1, δ), B(x2, δ), . . . They cover [a, b]
so by compactness there is a finite sub-cover, which we’ll relabel as
B(x1, δ), B(x2, δ), . . . , B(xI , δ).
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Since gm(xi) converges for each xi as above, it is Cauchy, so there is N
such that for all m,n > N and all i = 1, 2, . . . , I

|gm(xi)− gn(xi)| <
ϵ

3

STEP 4: Now we’re ready to conclude!

With the same N , if m,n > N and x ∈ [a, b], choose xi as above such
that |xi − x| < δ (can do that by def of a cover) then

|gm(x)− gn(x)| ≤ |gm(x)− gm(xi)|+ |gm(xi)− gn(xi)|+ |gn(xi)− gn(x)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ✓

(By equicontinuity, Cauchiness, and equicontinuity)

Note: The same proof works for C(K) where K is compact. In that
case we use that K is separable, i.e. it has a countable dense subset.
That dense subset serves as an anlog of rational numbers.

We also have a partial converse to the Arzela-Ascoli theorem.

Theorem:

If A ⊂ C(K) is compact, then it is bounded and equicontinuous.

Proof:

STEP 1: Let ϵ > 0. Using the definition of totally bounded, there
exists a finite collection of functions f1, . . . , fn ∈ A such that

A ⊂
n⋃

k=1

B(fk, ϵ)
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Here both the fi and n depend on ϵ

STEP 2: Choose any f ∈ A. Then f ∈ B(fk, ϵ) for some k ∈
{1, . . . , n}. In particular, this means that supx∈K |f(x)− fk(x)| < ϵ.

Boundedness:

sup
x∈K

|f(x)| ≤ sup
x∈K

|f(x)− fk(x)|+ sup
x∈K

|fk(x)|

≤ ϵ+

(
max

j=1,...,n
sup
x∈K

|fj(x)|
)

=: M < ∞

where supx∈K |fj(x)| is finite by the extreme value theorem, and we
are taking the maximum over a finite set. Since M is independent of
f , we conclude that A is uniformly bounded.

STEP 3: Equicontinuity:

|f(x)− f(y)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|
≤ 2ϵ+ max

j=1,...,n
|fj(x)− fj(y)|.

STEP 4: Since K is compact, each function fj(x) is uniformly con-
tinuous on K. This means that for all j = 1, . . . , n, we can find δj > 0
such that if |x− y| < δj then |fj(x)− fj(y)| < ϵ.

Let δ = min{δ1, . . . , δn} > 0.

Then, if |x− y| < δ we have maxj=1,...,n |fj(x)− fj(y)| < ϵ

Combining the previous steps, if |x− y| < δ, then

|f(x)− f(y)| < 3ϵ.
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Since δ is independent of f , we conclude that A is equicontinuous. □

3. Lipschitz Continuity

In practice it’s a pain to apply Arzelà-Ascoli directly, especially when
you need to check equicontinuity. Fortunately, there is a nice shortcut
which is called Lipschitz Continuity. This concept appears in many
different contexts, especially in the theory of ODE

Definition:

f : (X, d) → R is Lipschitz if there is L > 0 such that for all
x, y ∈ X,

|f(x)− f(y)| ≤ Ld(x, y).

In other words, the difference in outputs is not much bigger than the
difference in inputs. Intuitively, the Lipschitz constant L puts a bound
on the slopes of all of the possible secant lines of f . A Lipschitz func-
tion is “nice” in the sense that it “does not change too fast”.

Theorem:

Suppose f : R → R is continuously differentiable, and |f ′(x)| ≤ L
for all x. Then f is Lipschitz continuous, with Lipschitz constant
L.

Proof: Let x and y be given. Then by the mean value theorem, there
exists a point c between x and y such that

f(x)− f(y)

x− y
= f ′(c).

This implies

|f(x)− f(y)| = |f ′(c)∥x− y| ≤ L|x− y|✓ □
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Fact:

Let K ⊂ Rd be compact and A ⊂ C(K). If every function in A
is Lipschitz continuous with the same Lipschitz constant L, then
A is equicontinuous.

Proof: Let ϵ > 0, and choose δ = ϵ/2L. Then for all x, y ∈ K with
|x− y| < δ and for all f ∈ A,

|f(x)− f(y)| ≤ L|x− y| ≤ Lδ =
ϵ

2
< ϵ.

The same result holds for Hölder continuous functions:

Definition:

A function f : Rd → R is Hölder continuous with exponent
α ∈ (0, 1] if there is C > 0 such that for all x, y ∈ X,

|f(x)− f(y)| ≤ C|x− y|α.

The case α = 1 is Lipschitz continuity.

We mentioned above that the mean value theorem implies that if
f : [a, b] → R is continuously differentiable, f is Lipschitz with Lips-
chitz constant maxx∈[a,b] |f ′(x)|. Unfortunately, this does not work in
higher dimensions, since there is no n−dimensional analogue to the
mean value theorem.

However, we can obtain a similar result, if f is continuously differen-
tiable on a compact and convex set.
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Definition:

A set E in Rd is convex if for all x, y ∈ E, the line segment
joining them is also in E. In other words, for all x, y ∈ E,

tx+ (1− t)y ∈ E t ∈ [0, 1].

We then have the following fact:

Fact:

Let K ⊂ Rd convex and compact, and K ⊂ U , where U is
open. Let f : U → R be continuously differentiable, and let
supx∈K ∥Df(x)∥ = L.

Then f : K → R is Lipschitz with constant L.

Proof: Let x, y ∈ K. Then by the Fundamental Theorem of Calculus,

f(x)− f(y) =

∫ 1

0

d

dt
f (tx+ (1− t)y) dt

=

∫ 1

0

Df(tx+ (1− t)y) · (x− y)dt

=

(∫ 1

0

Df(tx+ (1− t)y)dt

)
· (x− y),

Taking absolute values, we have
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|f(x)− f(y)| ≤
∣∣∣∣∫ 1

0

Df(tx+ (1− t)y)dt

∣∣∣∣ |x− y|

≤

∫ 1

0

∥Df(tx+ (1− t)y)∥︸ ︷︷ ︸
≤ L since tx+(1−t)y ∈K

dt

 |x− y|

≤ L|x− y|.

4. ODE Existence Theorem

Here is a nice application of the Arzela-Ascoli theorem to ODEs. Let’s
first look at a couple of examples to see what can go wrong

Example 1: 
du

dt
=ku

u(0) =u0

Then u(t) = u0e
kt, so there is a unique solution existing for all time.

There is nothing wrong with this example

Example 2: 
du

dt
=u2

u(0) =1

By separation of variables, u(t) = 1
1−t

Notice u(t) → ∞ as t → 1 from the left. In other words, the solution
blows up to infinity in finite time
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Example 3: 
du

dt
=
√
u

u(0) =0

By separation of variables, one solution is u(t) = 1
4t

2

But by inspection, u(t) = 0 is another solution.

Even worse, there is actually an infinite number of solutions, which
can be written as

u(t) =

{
0 t ≤ C
1
4 (t− C)2 t > 0

So uniqueness fails pretty badly!

Given those examples, the best we can hope for (at least) is to prove
local existence, that is existence near the initial condition. The most
basic result is due to Peano, where only continuity is assumed.

Cauchy-Peano Existence Theorem:

Consider the initial value problem on R
du

dt
= f(t, u)

u(t0) = u0

If f is continuous in a neighborhood of (t0, u0), then there exists
at least one solution u(t) defined in a neighborhood of t0.
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Note: The same proof works for Rn and by translation you can as-
sume u(0) = 0

(We will prove this next time)
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