LECTURE: APPLICATIONS TO ODE

1. ODE Existence Theorem

Cauchy-Peano Existence Theorem:

Consider the initial value problem on \mathbb{R}

$$
\left\{\begin{aligned}
\frac{d u}{d t} & =f(t, u) \\
u(0) & =0
\end{aligned}\right.
$$

If f is continuous in a neighborhood of $(0,0)$, then there exists at least one solution $u(t)$ defined in a neighborhood of t_{0}.

Proof:

STEP 1: Since f is continuous in a neighborhood of $(0,0), f$ is continuous on a box $B=[-R, R] \times[-R, R]$ for some $R>0$, and since boxes are compact, there is $M \geq 1$ such that $|f(t, u)| \leq M$ on B

STEP 2: Rewrite the problem in integral form. This is useful because integrals are easier to deal with than derivatives

$$
\begin{gathered}
\int_{0}^{t} \frac{d}{d s} u(s) d s=\int_{0}^{t} f(s, u(s)) d s \\
u(t)=\int_{0}^{t} f(s, u(s)) d s
\end{gathered}
$$

Main Idea: Use Euler's method on a very fine grid.

STEP 3: Euler's Method

Let $T=\frac{R}{M}$
Given $n \in \mathbb{R}$ let $h_{n}=\frac{T}{n}$ be the mesh size for the time grid $[-T, T]$ so that the grid for t is given by

$$
\begin{aligned}
& {\left[-t_{n}^{n},-t_{n-1}^{n}, \ldots,-t_{1}^{n}, 0, t_{1}^{n}, t_{2}^{n}, \ldots, t_{n}^{n}\right] } \\
= & {\left[-n h_{n},-(n-1) h_{n}, \ldots,-h_{n}, 0, h_{n}, 2 h_{n}, \ldots, n h_{n}\right] . }
\end{aligned}
$$

We start with the initial condition $u_{0}^{n}=0$, and then we compute u_{m}^{n} on the rest of the grid using the forward Euler method:

$$
\begin{aligned}
& u_{0}^{n}=0 \\
& u_{1}^{n}=0+f(0,0) h_{n} \\
& u_{2}^{n}=u_{1}^{n}+f\left(t_{1}^{n}, u_{1}^{n}\right) h_{n} \\
& \quad \vdots \\
& u_{m+1}^{n}=u_{m}^{n}+f\left(t_{m}^{n}, u_{m}^{n}\right) h_{n}
\end{aligned}
$$

And similarly for going backwards in t
Define $u_{n}(t)$ to be the piecewise linear interpolation of these grid values, i.e. "connect the dots" by joining the points $\left(t_{m}^{n}, u_{m}^{n}\right)$ with line segments.

Notice that by construction we have

$$
u_{n}^{\prime}(t)=f\left(t_{m}^{n}, u_{m}^{n}\right) \text { on }\left(t_{m}^{n}, t_{m+1}^{n}\right)
$$

It follows from the bound on f that $\left|u_{n}^{\prime}(t)\right| \leq M$ except at the mesh points

Main Idea: Apply Arzelà-Ascoli to $\left\{u_{n}(t)\right\}$ to extract a uniformly convergent subsequence.

STEP 4: Show $\left\{u_{n}(t)\right\}$ is bounded and equicontinuous
Boundedness: For each Euler step, we have

$$
\left|u_{m+1}^{n}-u_{m}^{n}\right|=\left|f\left(t_{m}^{n}, u_{m}^{n}\right) h_{n}\right| \leq M h_{n}
$$

Since the function $u_{n}(t)$ involves (at most) n Euler steps in each direction, and $u_{n}(t)$ is linear between these steps, we have

$$
\left|u_{n}(t)\right| \leq n M h_{n}=M T \checkmark
$$

Equicontinuity: Since $u_{n}(t)$ is differentiable almost everywhere, we have for $-T \leq s, t \leq T$,

$$
\left|u_{n}(t)-u_{n}(s)\right| \leq \int_{s}^{t}\left|u_{n}^{\prime}(r)\right| d r \leq \int_{s}^{t} M d r=M|t-s| \checkmark
$$

Hence by the Arzela-Ascoli theorem, $\left\{u_{n}(t)\right\}$ has a uniformly convergent subsequence $\left\{u_{n_{k}}(t)\right\}=\left\{v_{k}(t)\right\}$ which converges to some $u(t)$

Claim: The limit $u(t)$ solves our ODE

STEP 5: Proof of Claim:

$$
\begin{aligned}
& \left|u(t)-\int_{0}^{t} f(s, u(s)) d s\right| \\
\leq & \left|u(t)-v_{k}(t)\right|+\left|v_{k}(t)-\int_{0}^{t} f\left(s, v_{k}(s)\right) d s\right|+\left|\int_{0}^{t} f\left(s, v_{k}(s)\right) d s-\int_{0}^{t} f(s, u(s)) d s\right| \\
= & A+B+C
\end{aligned}
$$

Study of A : This term goes to 0 as $k \rightarrow \infty$ because $v_{k} \rightarrow u$ uniformly

Study of C :

$\left|\int_{0}^{t} f\left(s, v_{k}(s)\right) d s-\int_{0}^{t} f(s, u(s)) d s\right| \leq \int_{0}^{t}\left|f\left(s, v_{k}(s)\right) d s-f(s, u(s))\right| d s$,
This also goes to 0 by the uniform convergence of $v_{k}(t)$ and because f is uniformly continuous on $[-T, T]$

STEP 6: Study of B

Let's focus on the mesh points of $v_{k}(t)$ which we'll label as t_{j}^{k}
Let $t \in[0, T]$, then $t \in\left[t_{m}^{k}, t_{m+1}^{k}\right]$ for some m (If t is one of the grid points then $t=t_{m+1}^{k}$)

Let v_{j}^{k} be the values of $v_{k}(t)$ on the grid t_{j}^{k} that is $v_{j}^{k}=v_{k}\left(t_{j}^{k}\right)$
Then write $v_{k}(t)$ as the following telescoping sum (recall $v_{k}(0)=0$)

$$
v_{k}(t)=\sum_{j=0}^{m-1}\left(v_{j+1}^{k}-v_{j}^{k}\right)+\left(v_{k}(t)-v_{m}^{k}\right)
$$

Then we get

$$
\begin{aligned}
B & =v_{k}(t)-\int_{0}^{t} f\left(s, v_{k}(s)\right) d s \\
& =\sum_{j=0}^{m-1}\left(v_{j+1}^{k}-v_{j}^{k}\right)-\sum_{j=0}^{m-1} \int_{t_{j}^{k}}^{t_{j+1}^{k}} f\left(s, v_{k}(s)\right) d s+\left(v_{k}(t)-v_{m}^{k}\right)-\int_{t_{m}^{k}}^{t} f\left(s, v_{k}(s)\right) d s \\
& =\sum_{j=0}^{m-1} \int_{t_{j}^{k}}^{t_{j+1}^{k}} v_{k}^{\prime}\left(s, v_{k}(s)\right) d s-\sum_{j=0}^{m-1} \int_{t_{j}^{k}}^{t_{j+1}^{k}} f\left(s, v_{k}(s)\right) d s+\int_{t_{m}^{k}}^{t} v_{k}^{\prime}\left(s, v_{k}(s)\right) d s-\int_{t_{m}^{k}}^{t} f\left(s, v_{k}(s)\right) \\
& \left.=\sum_{j=0}^{m-1} \int_{t_{j}^{k}}^{t_{j+1}^{k}}\left(f\left(t_{j}^{k}, v_{j}^{k}\right)-f\left(s, v_{k}(s)\right)\right) d s+\int_{t_{m}^{k}}^{t} f\left(t_{m}^{k}, v_{m}^{k}\right)-f\left(s, v_{k}(s)\right)\right) d s
\end{aligned}
$$

Taking absolute values, we obtain

$$
\begin{aligned}
& \left|v_{k}(t)-\int_{0}^{t} f\left(s, v_{k}(s)\right) d s\right| \\
& \leq \sum_{j=0}^{m-1} \int_{t_{j}^{k}}^{t_{j+1}^{k}}\left|f\left(t_{j}^{k}, v_{j}^{k}\right)-f\left(s, v_{k}(s)\right)\right| d s+\int_{t_{m}^{k}}^{t}\left|f\left(t_{m}^{k}, v_{m}^{k}\right)-f\left(s, v_{k}(s)\right)\right| d s \\
& \leq \sum_{j=0}^{m} \int_{t_{j}^{k}}^{t_{j+1}^{k}}\left|f\left(t_{j}^{k}, v_{j}^{k}\right)-f\left(s, v_{k}(s)\right)\right| d s
\end{aligned}
$$

STEP 7: All that remains is to estimate this integral!
Let $\epsilon>0$. Then by uniform continuity of f there is $\delta>0$ such that if $|s-t|<\delta$ and $|u-v|<\delta$, then $|f(s, u)-f(t, v)|<\epsilon$.

Then let k sufficiently large so that $h_{n_{k}}<\delta / M$.
Then, for all $s \in\left[t_{m}^{k}, t_{m+1}^{k}\right]$,

$$
\left|s-t_{m}^{k}\right| \leq\left|t_{m+1}^{k}-t_{m}^{k}\right|<\delta
$$

$$
\text { and }\left|v_{k}(s)-v_{m}^{k}\right| \leq\left|v_{m+1}^{k}-v_{m}^{k}\right| \leq M h_{n_{k}}<\delta
$$

since $v_{k}(s)$ is a piecewise interpolation between v_{k}^{k} and v_{m+1}^{k}.
For all the integrands involved in the sum, we have the bound

$$
\left|f\left(t_{j}^{k}, v_{j}^{k}\right)-f\left(s, v_{k}(s)\right)\right| \leq \epsilon
$$

Putting all of this together, we have

$$
\begin{aligned}
&\left|v_{k}(t)-\int_{0}^{t} f\left(s, v_{k}(s)\right) d s\right| \\
& \leq \sum_{j=0}^{m} \int_{t_{j}^{k}}^{t_{j+1}^{k}} \epsilon d s=\epsilon \sum_{j=0}^{m}\left(t_{j+1}^{j}-t_{j}^{k}\right) d s \\
& \leq \epsilon \sum_{j=0}^{m} h_{n_{k}} d s \\
& \leq \epsilon(m+1) h_{n_{k}} \\
& \leq \epsilon n_{k}\left(\frac{T}{n_{k}}\right) \\
&= \epsilon T \checkmark
\end{aligned}
$$

The following inequality is useful for ODE, in particular when proving uniqueness of solutions:

2. Grönwall's Inequality

Grönwall's Inequality:

Let $u(t)$ and $g(t)$ be non-negative, real-valued functions defined on $t \in[0, T]$. Suppose that for some $C \geq 0$ we have

$$
\begin{gathered}
u(t) \leq C+\int_{0}^{t} g(s) u(s) d s \\
\text { Then } u(t) \leq C \exp \left(\int_{0}^{t} g(s) d s\right)
\end{gathered}
$$

In particular, if $C=0$ then $u \equiv 0$ on $[0, T]$
Proof: We first consider the case where $C>0$. Let

$$
v(t)=: C+\int_{0}^{t} g(s) u(s) d s
$$

Then $u(t) \leq v(t)$ (by assumption), and $v(t) \geq C>0$
Differentiating v with respect to t, we obtain

$$
v^{\prime}(t)=g(t) u(t) \leq g(t) v(t)
$$

Since $v(t)>0$, we can divide by $v(t)$ to obtain

$$
\frac{v^{\prime}(t)}{v(t)} \leq g(t)
$$

Next, we integrate the function g to obtain

$$
\int_{0}^{t} g(s) d s \geq \int_{0}^{t} \frac{v^{\prime}(s)}{v(s)} d s=\int_{0}^{t} \frac{d}{d s}(\ln v(s)) d s=\ln \frac{v(t)}{v(0)}=\ln \frac{v(t)}{C}
$$

Finally, we exponentiate both sides and multiply by C to get

$$
u(t) \leq v(t) \leq C \exp \left(\int_{0}^{t} g(s) d s\right) \checkmark
$$

If $C=0$, then for any $\epsilon>0$,

$$
u(t) \leq \epsilon+\int_{0}^{t} g(s) u(s) d s
$$

By the first result (taking $C=\epsilon$), we have

$$
u(t) \leq \epsilon \exp \left(\int_{0}^{t} g(s) d s\right) \leq \epsilon \exp \left(\int_{0}^{T} g(s) d s\right) \leq M \epsilon
$$

Hence $u \equiv 0$ since ϵ is arbitrary

3. UniQUENESS

We can use the Gronwall inequality to prove the uniqueness of solutions to the initial value problem $\frac{d u}{d t}=f(t, u)$ in the case where the function f is Lipschitz continuous.

Local Uniqueness:

Consider the initial value problem on \mathbb{R}^{n}

$$
\left\{\begin{aligned}
\frac{d u}{d t} & =f(t, u) \\
u\left(t_{0}\right) & =u_{0}
\end{aligned}\right.
$$

Suppose that f is Lipschitz continuous in u in a neighborhood of $\left(t_{0}, u_{0}\right)$, with a Lipschitz constant L independent of t.

Then there is a unique sol $u(t)$ defined in a neighborhood of t_{0}.
Proof: WLOG $t_{0}=0$
Local existence follows from the Cauchy-Peano existence theorem.

For uniqueness, suppose that two functions $u_{1}(t)$ and $u_{2}(t)$ are local solutions to the initial value problem, both of which exist on a time interval $[-T, T]$.

If necessary, shrink T so that the Lipschitz condition holds on all of $[-T, T]$.

We will show that $u_{1}(t)=u_{2}(t)$ on $[-T, T]$.
Let $u(t)=u_{1}(t)-u_{2}(t)$.
Since both u_{1} and u_{2} solve the integrated form of the ODE,

$$
\begin{aligned}
|u(t)| & =\left|\left(u_{0}+\int_{0}^{t} f\left(s, u_{1}(s)\right) d s\right)-\left(u_{0}+\int_{0}^{t} f\left(s, u_{2}(s)\right) d s\right)\right| \\
& =\int_{0}^{t}\left|f\left(s, u_{1}(s)\right)-f\left(s, u_{2}(s)\right)\right| d s \leq \int_{0}^{t} L\left|u_{1}(s)-u_{2}(s)\right| d s \\
& =0+\int_{0}^{t} L u(s) d s
\end{aligned}
$$

We have satisfied the conditions of the Gronwall inequality with $g(t)=$ L and $C=0$. It follows that $u(t)=0$ for $t \in[0, T]$, from which we conclude that $u_{1}(t)=u_{2}(t)$ for $t \in[0, T]$. We can similarly obtain the result for $t \in[-T, 0]$

