LECTURE: APPLICATIONS TO ODE

1. ODE EXISTENCE THEOREM

Cauchy-Peano Existence Theorem:

Consider the initial value problem on R

du
% = f(tv U)
u(0) =0

If f is continuous in a neighborhood of (0,0), then there exists at
least one solution u(t) defined in a neighborhood of t.

Proof:

STEP 1: Since f is continuous in a neighborhood of (0,0), f is con-
tinuous on a box B = [—R, R] x [—R, R] for some R > 0, and since
boxes are compact, there is M > 1 such that |f(¢,u)] < M on B

STEP 2: Rewrite the problem in integral form. This is useful because
integrals are easier to deal with than derivatives

[ Seutsyas = [ stsutsnis

u(t):/O f(s,u(s))ds
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Main Idea: Use Euler’s method on a very fine grid.

STEP 3: Euler’s Method

Let | T =

=l=

Given n € R let | h, = L |be the mesh size for the time grid [T, 7] so
that the grid for ¢ is given by

n n n n n n
[_tnﬂ_ n—1s+++ 9 1,O,t1, 27~'-7tn]

=[—nh,, —(n — Dhyy ..oy —hy, 0, by, 20y, . nhy).

We start with the initial condition uj = 0, and then we compute u;],
on the rest of the grid using the forward Euler method:

uy =0
uy =0+ f(0,0)h,
uy = ui + (17, uy) e

U1 = Uy + J (L U )

And similarly for going backwards in ¢
Define u,(t) to be the piecewise linear interpolation of these grid val-
ues, i.e. “connect the dots” by joining the points (¢, w ) with line

m
segments.

Notice that by construction we have

U (8) = St ) on (25, 811)
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It follows from the bound on f that |u/(t)] < M except at the mesh
points

Main Idea: Apply Arzela-Ascoli to {u,(f)} to extract a uniformly
convergent subsequence.

STEP 4: Show {u,(t)} is bounded and equicontinuous

Boundedness: For each Euler step, we have

= |t upn ) hn| < Mhy,

|u%+1 — Up,|

Since the function w,(t) involves (at most) n Euler steps in each direc-
tion, and wu,(t) is linear between these steps, we have

lun(t)| < nMh, = MTV

Equicontinuity: Since u,(t) is differentiable almost everywhere, we
have for =T < s,t < T,

t t
up (£) — () g/ |u;(r)\drg/ Mdr = Mt — s|v

Hence by the Arzela-Ascoli theorem, {u,(¢)} has a uniformly conver-
gent subsequence {uy, (t)} = {vi(t)} which converges to some u(t)

Claim: The limit u(¢) solves our ODE

STEP 5: Proof of Claim:
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olt) =~ [ Ss.uts)is
vp(t /fsvk ))ds| + /fsvk ds—/fsu

Study of A: This term goes to 0 as £ — oo because vy, — u uniformly

<lu(t) — vr(t)] +

—A+B+C

Study of C:

s))ds—/o f(s,u(s))ds

This also goes to 0 by the uniform convergence of vi(t) and because f
is uniformly continuous on [—7', T

< [ 17t vnts))ds—f s, u(s)ds

STEP 6: Study of B
Let’s focus on the mesh points of v;(t) which we’ll label as ¢

Let ¢t € [0,7], then t € [tk ¢tk ] for some m (If ¢ is one of the grid
points then ¢t = ¢F )

Let v¥ be the values of vi(t) on the grid ¢¥ that is |vF = vy (¢F)

Then write vg(t) as the following telescoping sum (recall v;(0) = 0)

m—1

vg(t) = ' (U;‘Lrl — vf) + (vk(t) — v,’fl)

I
o

Then we get
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0
m—1 m—1 t’?H
= (U}k —v]-“) — j f(s,vr(s))ds + (vg(t f(s,v(s
p J+1 J jO/t;? /
m—1 t§¢+1 m—1 t?+1
= / v).(s,v1(8))ds — Z f(s,ve(s ))ds+/ v).(s,v1(8))ds —
i=0 7t =0 7t i
mel i ¢
= / (£t v5) = f(5,06(5)))ds + / F(t i) = £(s,vn(s)))ds

0
moleth ¢
<> / 5 05) = F(s o) lds 4 | 1F (s om) = F(s,vn(s))lds
j=0 "1 m
<> [ - s ulolas
j=0 71t

STEP 7: All that remains is to estimate this integral!

Let € > 0. Then by uniform continuity of f there is § > 0 such that if
s —t| < ¢ and |u —v| < §, then |f(s,u) — f(t,v)] <e.

Then let k sufficiently large so that h,, < /M.

Then, for all s € [tF & ],

st ] < Jthy —th] <6

t

t,

f(s,vi(s))
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and |vg(s) — U,]m < |v7]§1le — vﬁl\ < Mh,, <9,

since vy (s) is a piecewise interpolation between vy and v . ;.

For all the integrands involved in the sum, we have the bound

[F(E5,0F) = f(s,u(s))] < e.

Putting all of this together, we have

vk(t)—/o f(s,vr(s))ds

m tk+1 .
gZ/] eds =€y (th,, —th)ds
=0 /1 =0
m
<€Y hy,ds
j=0

The following inequality is useful for ODE, in particular when proving
uniqueness of solutions:

2. GRONWALL’S INEQUALITY
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7

Gronwall’s Inequality:

on t € [0,T]. Suppose that for some C' > 0 we have

u(t) < C —l—/o g(s)u(s)ds

Then u(t) < C exp ( /0 t g(s)ds)

In particular, if C' =0 then u =0 on [0, 7]

Let u(t) and g(t) be non-negative, real-valued functions defined

Proof: We first consider the case where C' > 0. Let
t
v(t) =:C —I—/ g(s)u(s)ds.
0
Then u(t) < v(t) (by assumption), and v(t) > C > 0

Differentiating v with respect to ¢, we obtain

V(t) = g(tult) < g(t)u(t).
Since v(t) > 0, we can divide by v(¢) to obtain

Next, we integrate the function g to obtain

/Otg(S)ds > /Ot v'(s) ) _ /Ot d% (Inv(s))ds = In o) _ Ug).

v(s) v(0)

Finally, we exponentiate both sides and multiply by C' to get

u(t) <wv(t) < Cexp (/Otg(s)dS) 4
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If C' =0, then for any ¢ > 0,

u(t) < €+/0 g(s)u(s)ds

By the first result (taking C' = ¢), we have

u(t) < cexp ( / tg(s)ds) < cexp ( / Tg(s)ds) < Me,

Hence u = 0 since € is arbitrary U

3. UNIQUENESS

We can use the Gronwall inequality to prove the uniqueness of solu-

tions to the initial value problem % = f(t,u) in the case where the

function f is Lipschitz continuous.

Local Uniqueness:

Consider the initial value problem on R"

du
% - f(t7 u)
u(to) = Up

Suppose that f is Lipschitz continuous in u in a neighborhood of
(to, up), with a Lipschitz constant L independent of ¢.

Then there is a unique sol u(t) defined in a neighborhood of t.

Proof: WLOG t; =0

Local existence follows from the Cauchy-Peano existence theorem.
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For uniqueness, suppose that two functions wu;(t) and uq(t) are local
solutions to the initial value problem, both of which exist on a time

interval [T, T.

If necessary, shrink 7" so that the Lipschitz condition holds on all of
—T,T].

We will show that u;(t) = us(t) on [T, T7.
Let u(t) = uy(t) — ua(t).

Since both u; and usy solve the integrated form of the ODE,
t t
u(t)] = \(u + [ ts.le)ds) = (+ f(s,uQ<s>>ds)|
0 0
t t
= [ 1fsvun(s)) = fs.ua(s)lds < [ Llun(s) — ualo)lds
0 0
t
= (H—/ Lu(s)ds
0

We have satisfied the conditions of the Gronwall inequality with g(¢) =
L and C' = 0. It follows that u(¢) = 0 for ¢t € [0,7], from which we
conclude that wuy(t) = us(t) for t € [0,7]. We can similarly obtain the
result for ¢t € [T, 0] O
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