
LECTURE: BANACH SPACES AND DERIVATIVES

1. Normed Vector Spaces and Banach Spaces
Definition:

A norm on a vector space V is a function ∥ · ∥ : V → R with the
following properties:

(1) ∥x∥ ≥ 0

(2) ∥x∥ = 0 ⇐⇒ x = 0

(3) ∥cx∥ = |c|∥x∥ for all scalars c

(4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

A vector space paired with a norm is a normed vector space.

Intuitively, a norm measures the length of a vector.

Every normed vector space is a metric space, since a norm induces a
metric, which is given by

d(x, y) = ∥x− y∥.

The converse, however, is not true. There are vector spaces on which
there is a metric, but no norm can be found.

Next, we define a bounded linear map between normed vector spaces.
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Definition:

Let X and Y be normed vector spaces and let L : X → Y be a
linear map.

Then L is bounded if there exists a constant C ≥ 0 such that
for all u ∈ X,

∥Lu∥Y ≤ C∥u∥X .

Here ∥u∥X is the norm in X and ∥u∥Y is the norm in Y

The miracle of functional analysis is that for a linear transformation,
continuity is equivalent to boundedness:

Theorem:

A linear transformation L : X → Y is bounded if and only if L is
continuous.

Proof: (⇒) If L is bounded, then

∥Lu− Lv∥Y = ∥L(u− v)∥Y ≤ L∥u− v∥X ,

and so L is Lipschitz, thus continuous.

(⇐) Assume L is continuous. Taking ϵ = 1, since L is continuous at
0, we can find δ > 0 such that, for all u ∈ X with ∥u∥X ≤ δ, ∥Lu∥Y ≤ 1

Let x ∈ X with x ̸= 0. Then∣∣∣∣∣∣∣∣ δ

∥x∥
x

∣∣∣∣∣∣∣∣
X

= δ

∣∣∣∣∣∣∣∣ x

∥x∥

∣∣∣∣∣∣∣∣
X

= δ,
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from which it follows that∣∣∣∣∣∣∣∣L(
δ

∥x∥
x

)∣∣∣∣∣∣∣∣
Y

≤ 1.

Therefore

∥Lx∥Y ≤ 1

δ
∥x∥X ,

thus L is a bounded linear operator with C = 1/δ □

Let L(X, Y ) be the space of bounded linear maps from X to Y . If
X = Y , we usually denote this L(X). We define the operator norm of
L ∈ L as follows:

Definition:

Let L : X → Y be a bounded linear operator. Then the operator
norm of L is defined as one of the following, all of which are
equivalent:

∥L∥ = sup
∥u∥X≤1

∥Lu∥Y

∥L∥ = sup
∥u∥X=1

∥Lu∥Y

∥L∥ = inf{C ≥ 0 : ∥Lu∥Y ≤ C∥u∥X for all u ∈ X}

Think of ∥L∥ as the maximum possible spread of L. For example, if
∥L∥ = 2 then for all x, ∥Lx∥Y ≤ 2 ∥x∥X , so ∥Lx∥Y is never more than
twice as big as ∥x∥X .

Definition:

A Banach space X is a complete normed vector space.
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Here completeness means (X, d) is complete, where d(x, y) = ∥x− y∥,
so Cauchy sequences in ∥·∥ converge.

L(X, Y ) becomes a normed vector space with the norm ∥L∥ defined
above. Moreover:

Definition:

If Y is a Banach space, then L(X, Y ) is also a Banach space.

The proof is left as an exercise. The proof that L(X, Y ) is complete is
similar to the proof of the completeness of C([a, b]).

The next lemma is incredibly useful and gives a criterion for a specific
linear operator on a Banach space to be invertible with bounded in-
verse:

Neumann Series Theorem:

Let X be a Banach space, and let S ∈ L(X) with ∥S∥ < 1. Then
I −S is invertible, and (I −S)−1 ∈ L(X), where I is the identity
operator on X.

Proof: Define the Neumann series for S as

L =
∞∑
n=0

Sn = I + S + S2 + ...

which is the operator analogue of the ordinary geometric series.

To show that this is well-defined, we note that the sequence of partial
sums of L is a Cauchy sequence, thus the sum converges since X is
complete.
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In addition, L is bounded, with

∥L∥ ≤
∞∑
n=0

∥S∥n ≤ 1

1− ∥S∥
.

Finally, since

(I − S)L = (I − S)
N∑
n=0

Sn

︸ ︷︷ ︸
L

=
N∑
n=0

(Sn − Sn+1) = I − SN+1︸ ︷︷ ︸
→ I

,

(I − S)L = I. Similarly, L(I − S) = I. □

2. Differentiation in Banach Spaces

Goal: If f : Rn → Rm, how to define the derivative f ′(x)?

Mnemonic: Input to Mouthput

First guess: By analogy with the scalar case, if x ∈ Rn

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

But here h is a vector, so it makes no sense to divide by h

Analogy: (n = 1) Note that if h is small, then

f(x+ h) = f(x) + f ′(x)h+ Smaller terms
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Definition:

Suppose f : Rn → Rm and x ∈ Rn.

If there is a linear transformation L : Rn → Rm such that

f(x+ h) = f(x) + Lh+ o(h)

Where lim
h→0

|o(h)|
|h|

= 0

Then we say f is differentiable at x and f ′(x) = L

And f is differentiable if f is differentiable at all x

In other words, if you can expand f(x+h) out with a small remainder,
then the linear part is the derivative of f .

Before, f ′(x) was just a number, but now it’s something more dynamic,
it’s a linear transformation. Intuitively, if f distorts space, then f ′(x)
describes the linear part of the distortion.

This is useful for theoretical purposes like showing the chain rule in
higher dimensions, but in practice, we have the following shortcut:

If all partial derivatives of f exist and are continuous in a neighborhood
of a, then f is differentiable, and the derivative is given by the Jacobian
matrix

DF (a) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂xm

. . . ∂f1
∂xn


x=a

.
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Finally, we extend this definition to arbitrary Banach spaces.

Definition:

Let X and Y be Banach spaces, U ⊂ X open, and f : U → Y .

Then f is differentiable at u ∈ U if there exists a bounded linear
transformation L ∈ L(X, Y ) such that

lim
h→0

∥f(u+ h)− f(u)− Lh∥Y
∥h∥X

= 0.

The map L is sometimes called the Fréchet derivative.

Note: If f is differentiable at u0 ∈ U , we use the notation Df(u0) or
fu(u0) for the derivative.

Remarks:

(1) That the Fréchet derivative, if it exists, is unique.

(2) To show that the Fréchet derivative exists, we usually find a
guess for the derivative, and then use the definition about to
show that that guess works.

(3) If f is differentiable for all u ∈ U , then the map Df : U →
L(X, Y ) defined by u 7→ Df(u) is well-defined.

(4) A function f is C1 if this map is continuous.

(5) The chain rule remains valid in Banach spaces (provided the
appropriate derivatives exist)

(6) Higher order derivatives can be defined by considering the dif-
ferentiability of Df : U → L(X, Y ), etc.
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3. Fixed Point Theorems

This section covers fixed point theorems, which guarantee the exis-
tence of a unique fixed point of a function, i.e. a unique x such that
f(x) = x. Fixed point methods are a powerful tool in analysis, espe-
cially numerical analysis, as we’ll soon discover

Definition:

If X is any nonempty set and f : X → X, then p is a fixed point
of f if

f(p) = p

Our next goal is to state the Banach fixed point theorem, which gives
a fairly simple sufficient condition for a map to have a fixed point.

Definition:

Let X be metric any metric space then f : X → X is a contrac-
tion if there is k < 1 such that

d(f(x), f(y)) ≤ kd(x, y)

For any x and y in X

In other words, f is Lipschitz continuous with Lipschitz constant L <
1.

Intuitively, contractions shrink distances between points
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Banach Fixed Point Theorem:

If X is complete and f is a contraction, then f has a unique fixed
point p.

Analogy: You may have noticed this phenomenon when you start
with a number on a calculator, and repeatedly apply cos or

√
x on it.

Eventually the number stays the same!

Proof:1

STEP 1: Let x0 ∈ X and define xn = fn(x0) (f applied n times)

Notice d(x1, x2) = d(f(x0), f(x1)) ≤ kd(x0, x1) and

And more generally you can show that

d(xn, xn+1) ≤ knd(x0, x1)

STEP 2: Claim: (xn) is Cauchy

Why? Let ϵ > 0 be given and N be TBA, then if m,n > N (WLOG
assume n ≥ m), then

1The proof is from Pugh’s book, Theorem 23 in Chapter 4



10 LECTURE: BANACH SPACES AND DERIVATIVES

d(xm, xn) ≤d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤kmd(x0, x1) + km+1d(x0, x1) + · · ·+ kn−1d(x1, x0) (By STEP 1)

≤
(
km + km+1 + · · ·+ kn−1

)
d(x1, x0)

=km
(
1 + k + · · ·+ kn−m−1

)
d(x0, x1)

≤km
(
1 + k + k2 + · · ·

)
d(x0, x1)

=km
(

1

1− k

)
d(x0, x1)

≤ kN

1− k
d(x0, x1) Since m > N and k < 1

But since k < 1 we have limn→∞ kn = 0, so we can choose N large
enough so that kN

1−kd(x0, x1) < ϵ, which in turn implies d(xm, xn) < ϵ

STEP 3: Since (xn) is Cauchy and X is complete, (xn) converges to
some p

Claim: p is a fixed point of f .

This follows because

xn+1 =f(xn)

lim
n→∞

xn+1 = lim
n→∞

f(xn)

p =f
(
lim
n→∞

xn

)
(continuity)

p =f(p)✓

STEP 4: Uniqueness: Suppose there are two fixed points p ̸= q,
then

d(p, q) = d(f(p), f(q)) ≤ kd(p, q) < d(p, q) ⇒⇐
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Applications of this include proving the ODE existence uniqueness the-
orem and proving the Inverse Function Theorem (see next time)

Here we give a nice application to numerical analysis, more precisely
let’s prove that Newton’s method converges.

Newton’s Method: The goal is to find zeros of f , that is x such that
f(x) = 0

For this, start with any x0 such that f ′(x0) ̸= 0 and then iterate the
algorithm

xn+1 = xn −
f(xn)

f ′(xn)
.

Geometrically, the new value of x is where the tangent line of f at
(xn, f(xn)) hits the x-axis.

And the hope is that this algorithm converges to a zero of f

Convergence of Newton’s Method:

Let f : [a, b] → R be C2. Suppose for some x ∈ [a, b] that
f(x) = 0 and f ′(x) ̸= 0.

Then there exists an interval I = [x− δ, x + δ] ⊂ [a, b] such that
Newton’s method converges to x starting at any x0 ∈ I.

Proof:

STEP 1: Define the “Newton function”

g(x) = x− f(x)

f ′(x)
.
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This corresponds to the right-hand-side of Newton’s method

We will show that there is an interval containing x on which g is a
contraction.

STEP 2: Since f ′′ is continuous [a, b], there is M > 0 such that
|f ′′(x)| ≤ M for all x ∈ [a, b].

Given δ > 0 TBA, let I = [x− δ, x+ δ] ⊂ [a, b].

Then for any y1, y2 ∈ I, since g is continuously differentiable, by the
mean-value theorem, we have

|g(y1)− g(y2)| ≤ sup
y∈I

|g′(y)| |y1 − y2|.

Our goal is to choose δ sufficiently small to control g′(y).

Differentiating g(y), we obtain

g′(y) = 1− f ′(y)2 − f(y)f ′′(y)

f ′(y)2
=

f(y)f ′′(y)

f ′(y)2

STEP 3: Since f(x) = 0, and f ′(x) ̸= 0, choose δ sufficiently small so
that I ⊂ [a, b], and, for all y ∈ I the following two things hold:

(1) |f ′(y)| ≥ 1

2
|f ′(x)|

(2) |f(y)| ≤ |f ′(x)|2

8M

For all y ∈ I, using the expression for g′(y) from the previous step,

|g(y1)− g(y2)| ≤
|f(y)||f ′′(y)|

|f ′(y)|2
|y1 − y2| ≤

|f ′(x)|2

8M
M

4

|f ′(x)|2
≤ 1

2
|y1 − y2|.
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Hence g is a contraction on I

Therefore, by the Banach Fixed Point Theorem g has a unique fixed
point x⋆ in I, that is Newton’s method converges to some x⋆

But by assumption, since f(x) = 0 we then have g(x) = x− 0
f ′(x) = x

and so by uniqueness of fixed points, x⋆ = x

That is, Newton’s method indeed converges to a zero of f □

4. Inverse Function Theorem

As another consequence, we can prove the celebrated Inverse Function
Theorem in Analysis.

Goal: If y = f(x), when can we solve for x in terms of y? That is,
when can we write x = g(y) where g is a smooth function?

Example 1: If f(x) = x3 then g(y) = y
1
3 . Notice g is differentiable

except at 0, and 0 is precisely the point where f ′(x) = 0

Example 2: If f(x) = x2 then we can’t find a global inverse (valid
for all x) since f isn’t one-to-one, but our hope is to do this locally,
around a point. Once again there is no inverse when f ′(x) = 0.

In short, we would like to say “As long as f ′(x) ̸= 0, we can solve for
x in terms of y, at least locally”

Moreover, if n = 1 if f(g(x)) = x then differentiating this, we get
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f ′(g(x))g′(x) = 1 ⇒ g′(x) =
1

f ′(g(x))

This was used in Calculus to get the derivatives of ln(x) or sin−1(x)
for example.
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