LECTURE: BANACH SPACES AND DERIVATIVES

1. Normed Vector Spaces and Banach Spaces

Definition:

A norm on a vector space V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ with the following properties:
(1) $\|x\| \geq 0$
(2) $\|x\|=0 \Longleftrightarrow x=0$
(3) $\|c x\|=|c|\|x\|$ for all scalars c
(4) $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)

A vector space paired with a norm is a normed vector space.

Intuitively, a norm measures the length of a vector.
Every normed vector space is a metric space, since a norm induces a metric, which is given by

$$
d(x, y)=\|x-y\| .
$$

The converse, however, is not true. There are vector spaces on which there is a metric, but no norm can be found.

Next, we define a bounded linear map between normed vector spaces.

Definition:

Let X and Y be normed vector spaces and let $L: X \rightarrow Y$ be a linear map.

Then L is bounded if there exists a constant $C \geq 0$ such that for all $u \in X$,

$$
\|L u\|_{Y} \leq C\|u\|_{X}
$$

Here $\|u\|_{X}$ is the norm in X and $\|u\|_{Y}$ is the norm in Y
The miracle of functional analysis is that for a linear transformation, continuity is equivalent to boundedness:

Theorem:

A linear transformation $L: X \rightarrow Y$ is bounded if and only if L is continuous.

Proof: (\Rightarrow) If L is bounded, then

$$
\|L u-L v\|_{Y}=\|L(u-v)\|_{Y} \leq L\|u-v\|_{X}
$$

and so L is Lipschitz, thus continuous.
(\Leftarrow) Assume L is continuous. Taking $\epsilon=1$, since L is continuous at 0 , we can find $\delta>0$ such that, for all $u \in X$ with $\|u\|_{X} \leq \delta,\|L u\|_{Y} \leq 1$

Let $x \in X$ with $x \neq 0$. Then

$$
\left\|\frac{\delta}{\|x\|} x\right\|_{X}=\delta\left\|\frac{x}{\|x\|}\right\|_{X}=\delta
$$

from which it follows that

$$
\left\|L\left(\frac{\delta}{\|x\|} x\right)\right\|_{Y} \leq 1
$$

Therefore

$$
\|L x\|_{Y} \leq \frac{1}{\delta}\|x\|_{X}
$$

thus L is a bounded linear operator with $C=1 / \delta$
Let $\mathcal{L}(X, Y)$ be the space of bounded linear maps from X to Y. If $X=Y$, we usually denote this $\mathcal{L}(X)$. We define the operator norm of $L \in \mathcal{L}$ as follows:

Definition:

Let $L: X \rightarrow Y$ be a bounded linear operator. Then the operator norm of L is defined as one of the following, all of which are equivalent:

$$
\begin{aligned}
& \|L\|=\sup _{\|u\|_{X} \leq 1}\|L u\|_{Y} \\
& \|L\|=\sup _{\|u\|_{X}=1}\|L u\|_{Y} \\
& \|L\|=\inf \left\{C \geq 0:\|L u\|_{Y} \leq C\|u\|_{X} \text { for all } u \in X\right\}
\end{aligned}
$$

Think of $\|L\|$ as the maximum possible spread of L. For example, if $\|L\|=2$ then for all $x,\|L x\|_{Y} \leq 2\|x\|_{X}$, so $\|L x\|_{Y}$ is never more than twice as big as $\|x\|_{X}$.

Definition:

A Banach space X is a complete normed vector space.

Here completeness means (X, d) is complete, where $d(x, y)=\|x-y\|$, so Cauchy sequences in $\|\cdot\|$ converge.
$\mathcal{L}(X, Y)$ becomes a normed vector space with the norm $\|L\|$ defined above. Moreover:

Definition:

If Y is a Banach space, then $\mathcal{L}(X, Y)$ is also a Banach space.
The proof is left as an exercise. The proof that $\mathcal{L}(X, Y)$ is complete is similar to the proof of the completeness of $C([a, b])$.

The next lemma is incredibly useful and gives a criterion for a specific linear operator on a Banach space to be invertible with bounded inverse:

Neumann Series Theorem:

Let X be a Banach space, and let $S \in \mathcal{L}(X)$ with $\|S\|<1$. Then $I-S$ is invertible, and $(I-S)^{-1} \in L(X)$, where I is the identity operator on X.

Proof: Define the Neumann series for S as

$$
L=\sum_{n=0}^{\infty} S^{n}=I+S+S^{2}+\ldots
$$

which is the operator analogue of the ordinary geometric series.
To show that this is well-defined, we note that the sequence of partial sums of L is a Cauchy sequence, thus the sum converges since X is complete.

In addition, L is bounded, with

$$
\|L\| \leq \sum_{n=0}^{\infty}\|S\|^{n} \leq \frac{1}{1-\|S\|}
$$

Finally, since

$$
(I-S) L=(I-S) \underbrace{\sum_{n=0}^{N} S^{n}}_{L}=\sum_{n=0}^{N}\left(S^{n}-S^{n+1}\right)=\underbrace{I-S^{N+1}}_{\rightarrow I},
$$

$(I-S) L=I$. Similarly, $L(I-S)=I$.

2. Differentiation in Banach Spaces

Goal: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, how to define the derivative $f^{\prime}(x)$?
Mnemonic: Input to Mouthput
First guess: By analogy with the scalar case, if $x \in \mathbb{R}^{n}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

But here h is a vector, so it makes no sense to divide by h
Analogy: $(n=1)$ Note that if h is small, then

$$
f(x+h)=f(x)+f^{\prime}(x) h+\text { Smaller terms }
$$

Definition:

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$.
If there is a linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{gathered}
f(x+h)=f(x)+L h+o(h) \\
\text { Where } \lim _{h \rightarrow 0} \frac{|o(h)|}{|h|}=0
\end{gathered}
$$

Then we say f is differentiable at x and $f^{\prime}(x)=L$

And f is differentiable if f is differentiable at all x
In other words, if you can expand $f(x+h)$ out with a small remainder, then the linear part is the derivative of f.

Before, $f^{\prime}(x)$ was just a number, but now it's something more dynamic, it's a linear transformation. Intuitively, if f distorts space, then $f^{\prime}(x)$ describes the linear part of the distortion.

This is useful for theoretical purposes like showing the chain rule in higher dimensions, but in practice, we have the following shortcut:

If all partial derivatives of f exist and are continuous in a neighborhood of a, then f is differentiable, and the derivative is given by the Jacobian matrix

$$
D F(a)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{m}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right)_{x=a} .
$$

Finally, we extend this definition to arbitrary Banach spaces.

Definition:

Let X and Y be Banach spaces, $U \subset X$ open, and $f: U \rightarrow Y$.
Then f is differentiable at $u \in U$ if there exists a bounded linear transformation $L \in \mathcal{L}(X, Y)$ such that

$$
\lim _{h \rightarrow 0} \frac{\|f(u+h)-f(u)-L h\|_{Y}}{\|h\|_{X}}=0 .
$$

The map L is sometimes called the Fréchet derivative.
Note: If f is differentiable at $u_{0} \in U$, we use the notation $D f\left(u_{0}\right)$ or $f_{u}\left(u_{0}\right)$ for the derivative.

Remarks:

(1) That the Fréchet derivative, if it exists, is unique.
(2) To show that the Fréchet derivative exists, we usually find a guess for the derivative, and then use the definition about to show that that guess works.
(3) If f is differentiable for all $u \in U$, then the map $D f: U \rightarrow$ $\mathcal{L}(X, Y)$ defined by $u \mapsto D f(u)$ is well-defined.
(4) A function f is C^{1} if this map is continuous.
(5) The chain rule remains valid in Banach spaces (provided the appropriate derivatives exist)
(6) Higher order derivatives can be defined by considering the differentiability of $D f: U \rightarrow \mathcal{L}(X, Y)$, etc.

3. Fixed Point Theorems

This section covers fixed point theorems, which guarantee the existence of a unique fixed point of a function, i.e. a unique x such that $f(x)=x$. Fixed point methods are a powerful tool in analysis, especially numerical analysis, as we'll soon discover

Definition:

If X is any nonempty set and $f: X \rightarrow X$, then p is a fixed point of f if

$$
f(p)=p
$$

Our next goal is to state the Banach fixed point theorem, which gives a fairly simple sufficient condition for a map to have a fixed point.

Definition:

Let X be metric any metric space then $f: X \rightarrow X$ is a contraction if there is $k<1$ such that

$$
d(f(x), f(y)) \leq k d(x, y)
$$

For any x and y in X
In other words, f is Lipschitz continuous with Lipschitz constant $L<$ 1.

Intuitively, contractions shrink distances between points

Banach Fixed Point Theorem:

If X is complete and f is a contraction, then f has a unique fixed point p.

Analogy: You may have noticed this phenomenon when you start with a number on a calculator, and repeatedly apply \cos or \sqrt{x} on it. Eventually the number stays the same!

Proof: $\sqrt{1}$

STEP 1: Let $x_{0} \in X$ and define $x_{n}=f^{n}\left(x_{0}\right)$ (f applied n times)
Notice $d\left(x_{1}, x_{2}\right)=d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \leq k d\left(x_{0}, x_{1}\right)$ and
And more generally you can show that

$$
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)
$$

STEP 2: Claim: $\left(x_{n}\right)$ is Cauchy
Why? Let $\epsilon>0$ be given and N be TBA, then if $m, n>N$ (WLOG assume $n \geq m$), then

[^0]\[

$$
\begin{align*}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{m+2}\right)+\cdots+d\left(x_{n-1}, x_{n}\right) \\
& \leq k^{m} d\left(x_{0}, x_{1}\right)+k^{m+1} d\left(x_{0}, x_{1}\right)+\cdots+k^{n-1} d\left(x_{1}, x_{0}\right) \tag{BySTEP1}\\
& \leq\left(k^{m}+k^{m+1}+\cdots+k^{n-1}\right) d\left(x_{1}, x_{0}\right) \\
& =k^{m}\left(1+k+\cdots+k^{n-m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq k^{m}\left(1+k+k^{2}+\cdots\right) d\left(x_{0}, x_{1}\right) \\
& =k^{m}\left(\frac{1}{1-k}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right) \quad \text { Since } m>N \text { and } k<1
\end{align*}
$$
\]

But since $k<1$ we have $\lim _{n \rightarrow \infty} k^{n}=0$, so we can choose N large enough so that $\frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right)<\epsilon$, which in turn implies $d\left(x_{m}, x_{n}\right)<\epsilon \checkmark$

STEP 3: Since $\left(x_{n}\right)$ is Cauchy and X is complete, $\left(x_{n}\right)$ converges to some p

Claim: p is a fixed point of f.
This follows because

$$
\begin{aligned}
x_{n+1} & =f\left(x_{n}\right) \\
\lim _{n \rightarrow \infty} x_{n+1} & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \\
p & =f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { (continuity) } \\
p & =f(p) \checkmark
\end{aligned}
$$

STEP 4: Uniqueness: Suppose there are two fixed points $p \neq q$, then

$$
d(p, q)=d(f(p), f(q)) \leq k d(p, q)<d(p, q) \Rightarrow \Leftarrow
$$

Applications of this include proving the ODE existence uniqueness theorem and proving the Inverse Function Theorem (see next time)

Here we give a nice application to numerical analysis, more precisely let's prove that Newton's method converges.

Newton's Method: The goal is to find zeros of f, that is x such that $f(x)=0$

For this, start with any x_{0} such that $f^{\prime}\left(x_{0}\right) \neq 0$ and then iterate the algorithm

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Geometrically, the new value of x is where the tangent line of f at $\left(x_{n}, f\left(x_{n}\right)\right)$ hits the x-axis.

And the hope is that this algorithm converges to a zero of f

Convergence of Newton's Method:

Let $f:[a, b] \rightarrow \mathbb{R}$ be C^{2}. Suppose for some $x \in[a, b]$ that $f(x)=0$ and $f^{\prime}(x) \neq 0$.

Then there exists an interval $I=[x-\delta, x+\delta] \subset[a, b]$ such that Newton's method converges to x starting at any $x_{0} \in I$.

Proof:

STEP 1: Define the "Newton function"

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)} .
$$

This corresponds to the right-hand-side of Newton's method
We will show that there is an interval containing x on which g is a contraction.

STEP 2: Since $f^{\prime \prime}$ is continuous $[a, b]$, there is $M>0$ such that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $x \in[a, b]$.

Given $\delta>0$ TBA, let $I=[x-\delta, x+\delta] \subset[a, b]$.
Then for any $y_{1}, y_{2} \in I$, since g is continuously differentiable, by the mean-value theorem, we have

$$
\left|g\left(y_{1}\right)-g\left(y_{2}\right)\right| \leq \sup _{y \in I}\left|g^{\prime}(y)\right|\left|y_{1}-y_{2}\right| .
$$

Our goal is to choose δ sufficiently small to control $g^{\prime}(y)$.
Differentiating $g(y)$, we obtain

$$
g^{\prime}(y)=1-\frac{f^{\prime}(y)^{2}-f(y) f^{\prime \prime}(y)}{f^{\prime}(y)^{2}}=\frac{f(y) f^{\prime \prime}(y)}{f^{\prime}(y)^{2}}
$$

STEP 3: Since $f(x)=0$, and $f^{\prime}(x) \neq 0$, choose δ sufficiently small so that $I \subset[a, b]$, and, for all $y \in I$ the following two things hold:
(1) $\left|f^{\prime}(y)\right| \geq \frac{1}{2}\left|f^{\prime}(x)\right|$
(2) $|f(y)| \leq \frac{\left|f^{\prime}(x)\right|^{2}}{8 M}$

For all $y \in I$, using the expression for $g^{\prime}(y)$ from the previous step, $\left|g\left(y_{1}\right)-g\left(y_{2}\right)\right| \leq \frac{|f(y)|\left|f^{\prime \prime}(y)\right|}{\left|f^{\prime}(y)\right|^{2}}\left|y_{1}-y_{2}\right| \leq \frac{\left|f^{\prime}(x)\right|^{2}}{8 M} M \frac{4}{\left|f^{\prime}(x)\right|^{2}} \leq \frac{1}{2}\left|y_{1}-y_{2}\right|$.

Hence g is a contraction on I
Therefore, by the Banach Fixed Point Theorem g has a unique fixed point x^{\star} in I, that is Newton's method converges to some x^{\star}

But by assumption, since $f(x)=0$ we then have $g(x)=x-\frac{0}{f^{\prime}(x)}=x$ and so by uniqueness of fixed points, $x^{\star}=x$

That is, Newton's method indeed converges to a zero of f

4. Inverse Function Theorem

As another consequence, we can prove the celebrated Inverse Function Theorem in Analysis.

Goal: If $y=f(x)$, when can we solve for x in terms of y ? That is, when can we write $x=g(y)$ where g is a smooth function?

Example 1: If $f(x)=x^{3}$ then $g(y)=y^{\frac{1}{3}}$. Notice g is differentiable except at 0 , and 0 is precisely the point where $f^{\prime}(x)=0$

Example 2: If $f(x)=x^{2}$ then we can't find a global inverse (valid for all x) since f isn't one-to-one, but our hope is to do this locally, around a point. Once again there is no inverse when $f^{\prime}(x)=0$.

In short, we would like to say "As long as $f^{\prime}(x) \neq 0$, we can solve for x in terms of y, at least locally"

Moreover, if $n=1$ if $f(g(x))=x$ then differentiating this, we get

$$
f^{\prime}(g(x)) g^{\prime}(x)=1 \Rightarrow g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

This was used in Calculus to get the derivatives of $\ln (x)$ or $\sin ^{-1}(x)$ for example.

[^0]: ${ }^{1}$ The proof is from Pugh's book, Theorem 23 in Chapter 4

