LECTURE: BANACH SPACES AND DERIVATIVES

1. NORMED VECTOR SPACES AND BANACH SPACES

A norm on a vector space V' is a function || - || : V' — R with the
following properties:

(1) [lz[| =0

(2) ||z]| =0 <= =0

(3) |lcz|| = |e|||z]| for all scalars ¢

(4) [z + yll < [lz]| + [ly|| (triangle inequality)

A vector space paired with a norm is a normed vector space.
Intuitively, a norm measures the length of a vector.

Every normed vector space is a metric space, since a norm induces a
metric, which is given by

d(z,y) = [l = yl|

The converse, however, is not true. There are vector spaces on which
there is a metric, but no norm can be found.

Next, we define a bounded linear map between normed vector spaces.

1
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Let X and Y be normed vector spaces and let L : X — Y be a
linear map.

Then L is bounded if there exists a constant C' > 0 such that

for all u € X,
[ Lully < Cllul|x.

Here ||u||x is the norm in X and ||u|ly is the norm in Y

The miracle of functional analysis is that for a linear transformation,
continuity is equivalent to boundedness:

A linear transformation L : X — Y is bounded if and only if L is
continuous.

Proof: (=) If L is bounded, then
[Lu = Lofly = |[L(u = o)y < Ljju = vl|x,

and so L is Lipschitz, thus continuous.

(<) Assume L is continuous. Taking € = 1, since L is continuous at
0, we can find § > 0 such that, for all u € X with ||ul|x <4, ||Lu|ly <1

Let x € X with x # 0. Then
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from which it follows that

J
(i)l =
=l / {1y
Therefore
1
Lol < Zellx,
thus L is a bounded linear operator with C'=1/§ [

Let £(X,Y) be the space of bounded linear maps from X to Y. If
X =Y, we usually denote this £(X). We define the operator norm of
L € L as follows:

Let L : X — Y be a bounded linear operator. Then the operator
norm of L is defined as one of the following, all of which are
equivalent:

1Ll = sup [[Lully

[Jullx <1

IL)} = sup [|Lully

[Jullx=1

|L|| =inf{C > 0 : || Lu|ly < C||u||x for all u € X}

Think of ||L|| as the maximum possible spread of L. For example, if
|L|| = 2 then for all z, ||Lz||y < 2||z|y, so ||Lz|y is never more than
twice as big as ||z|| .

A Banach space X is a complete normed vector space.
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Here completeness means (X, d) is complete, where d(z,y) = ||z — y||,
so Cauchy sequences in ||-|| converge.

L(X,Y) becomes a normed vector space with the norm ||L|| defined
above. Moreover:

Detfinition:

If Y is a Banach space, then £(X,Y) is also a Banach space.

The proof is left as an exercise. The proof that £(X,Y') is complete is
similar to the proof of the completeness of C(]a,b]).

The next lemma is incredibly useful and gives a criterion for a specific
linear operator on a Banach space to be invertible with bounded in-
verse:

Neumann Series Theorem:

Let X be a Banach space, and let S € £(X) with ||S|| < 1. Then
I — S is invertible, and (I —S)~! € L(X), where I is the identity
operator on X.

Proof: Define the Neumann series for S as

L:ZS”:I+S+SQ+...

n=0
which is the operator analogue of the ordinary geometric series.
To show that this is well-defined, we note that the sequence of partial

sums of L is a Cauchy sequence, thus the sum converges since X is
complete.
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In addition, L is bounded, with

> 1
|L|| < |S|I" < :
nz:% 1— |5

Finally, since

N N
(I-S)L=(I-8)) S"=> (§"—85")=1-5""
n=0 n=0 T
L

(I —S)L =1I. Similarly, L(I — §) = 1.

2. DIFFERENTIATION IN BANACH SPACES
Goal: If f: R" — R™, how to define the derivative f'(z)?

Mnemonic: Input to Mouthput

First guess: By analogy with the scalar case, if x € R"

f/(ilf) _ }Lli% f(x"'_h})l_f(x)

But here h is a vector, so it makes no sense to divide by A

Analogy: (n = 1) Note that if A is small, then

f(x+h) = f(x)+ f'(z)h + Smaller terms
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Suppose f:R"” — R™ and x € R".
If there is a linear transformation L : R” — R™ such that

fx+h)=f(z)+ Lh+ o(h)

Where lim M =0
h—0 |h|

Then we say f is differentiable at x and f/'(z) = L

And f is differentiable if f is differentiable at all

In other words, if you can expand f(z+h) out with a small remainder,
then the linear part is the derivative of f.

Before, f'(x) was just a number, but now it’s something more dynamic,
it’s a linear transformation. Intuitively, if f distorts space, then f'(x)
describes the linear part of the distortion.

This is useful for theoretical purposes like showing the chain rule in
higher dimensions, but in practice, we have the following shortcut:

If all partial derivatives of f exist and are continuous in a neighborhood
of a, then f is differentiable, and the derivative is given by the Jacobian
matrix

oh o

ox1 " Oz,
DF(a) =1 : :

Ofm oh

axm .. aln r—a
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Finally, we extend this definition to arbitrary Banach spaces.

Let X and Y be Banach spaces, U C X open, and f: U — Y.

Then f is differentiable at u € U if there exists a bounded linear
transformation L € £(X,Y) such that

i 1w+ 1) = fu) = Lhfly _

0.
h—0 17|l x

The map L is sometimes called the Fréchet derivative.

Note: If f is differentiable at uy € U, we use the notation D f(ug) or
fulug) for the derivative.

Remarks:

(1) That the Fréchet derivative, if it exists, is unique.

(2) To show that the Fréchet derivative exists, we usually find a
guess for the derivative, and then use the definition about to
show that that guess works.

(3) If f is differentiable for all w € U, then the map Df: U —
L(X,Y) defined by u — D f(u) is well-defined.

(4) A function f is C if this map is continuous.

(5) The chain rule remains valid in Banach spaces (provided the
appropriate derivatives exist)

(6) Higher order derivatives can be defined by considering the dif-
ferentiability of Df : U — L(X,Y), etc.



8 LECTURE: BANACH SPACES AND DERIVATIVES

3. FIXED POINT THEOREMS

This section covers fixed point theorems, which guarantee the exis-
tence of a unique fixed point of a function, i.e. a unique x such that
f(z) = z. Fixed point methods are a powerful tool in analysis, espe-
cially numerical analysis, as we’ll soon discover

If X is any nonempty set and f : X — X, then p is a fixed point
of f if
fp)=p

Our next goal is to state the Banach fixed point theorem, which gives
a fairly simple sufficient condition for a map to have a fixed point.

Let X be metric any metric space then f : X — X is a contrac-
tion if there is £ < 1 such that

d(f(x), f(y)) < kd(z,y)

For any z and y in X

In other words, f is Lipschitz continuous with Lipschitz constant L <
1.

Intuitively, contractions shrink distances between points
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Banach Fixed Point Theorem:

If X is complete and f is a contraction, then f has a unique fixed
point p.

Analogy: You may have noticed this phenomenon when you start
with a number on a calculator, and repeatedly apply cos or \/x on it.
Eventually the number stays the same!

Proof]
STEP 1: Let 2y € X and define x,, = f"(zo) (f applied n times)
Notice d(z1,x2) = d(f(xo), f(x1)) < kd(xg,x1) and

And more generally you can show that

d(x’na xn—kl) < kﬂd(x(), .Tl)

STEP 2: Claim: (z,) is Cauchy

Why? Let € > 0 be given and N be TBA, then if m,n > N (WLOG
assume n > m), then

IThe proof is from Pugh’s book, Theorem 23 in Chapter 4
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d(m, xn) <d(Tpm, Tmy1) + d(Xmat1, Tmao) + -+ + d(Tp1, Tp)
<k™d(zg,x1) + kmﬂd(xo, r1) 4 -+ K (2, 20) (By STEP 1)
< (K™ + K" 4+ B d @, )
=k (1+k+---+k” 1) d(wo, 1)
<k™ (L4 k+k + ) d(zo, 1)

_jm (ﬁ) d(z0,71)

]{?N
Sﬁd(l‘o,xl) Since m > N and k < 1
But since k < 1 we have lim,, ,, k" = 0, so we can choose N large
enough so that - d(xo, r1) < €, which in turn implies d(x,,, x,) < € v

STEP 3: Since (x,) is Cauchy and X is complete, (z,) converges to
some p

Claim: p is a fixed point of f.

This follows because

Ln+1 :f(xn)
lim z,,1 = lim f(x,)
n—oo

n—00
p=f (hm xn) (continuity)
p=f(p)v
STEP 4: Uniqueness: Suppose there are two fixed points p # ¢,

then

d(p,q) = d(f(p), f(q)) < kd(p,q) < d(p,q) =<
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Applications of this include proving the ODE existence uniqueness the-
orem and proving the Inverse Function Theorem (see next time)

Here we give a nice application to numerical analysis, more precisely
let’s prove that Newton’s method converges.

Newton’s Method: The goal is to find zeros of f, that is x such that
flz) =0

For this, start with any xy such that f’(xy) # 0 and then iterate the
algorithm

n

Geometrically, the new value of x is where the tangent line of f at
(n, f(z,)) hits the z-axis.

And the hope is that this algorithm converges to a zero of f

Convergence of Newton’s Method:

Let f : [a,b] — R be C?. Suppose for some = € [a,b] that
f(z) =0 and f'(x) # 0.

Then there exists an interval I = [z — §,z + §] C [a, b] such that
Newton’s method converges to x starting at any xg € I.

Proof:

STEP 1: Define the “Newton function”

W)
A= ay
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This corresponds to the right-hand-side of Newton’s method

We will show that there is an interval containing x on which g is a
contraction.

STEP 2: Since f” is continuous [a,b], there is M > 0 such that
|f"(x)] < M for all x € [a,b].

Given § > 0 TBA, let [ =[x — d,x + 0] C [a, b].

Then for any y1,y» € I, since g is continuously differentiable, by the
mean-value theorem, we have

19(y1) — g(ya)| < sup 19" ()] |1 — wol.

Our goal is to choose ¢ sufficiently small to control ¢'(y).

Differentiating ¢g(y), we obtain

W =ty _ fw)f" )

f'(y)? f'(y)?

STEP 3: Since f(xz) =0, and f’(z) # 0, choose ¢ sufficiently small so
that I C [a,b], and, for all y € I the following two things hold:

gy)=1-

(1) 17| > 512

(@)
@) 1fw)] < 550

For all y € I, using the expression for ¢'(y) from the previous step,

B SIS Wl ' () 4 1
9(y1) — 9(y2)| < O [y1 — 42| < Wi M|f,(x)|2§2\yl Yal-




LECTURE: BANACH SPACES AND DERIVATIVES 13
Hence g is a contraction on [

Therefore, by the Banach Fixed Point Theorem ¢ has a unique fixed
point z* in I, that is Newton’s method converges to some x*

But by assumption, since f(x) = 0 we then have g(x) = = — 7o) = &
and so by uniqueness of fixed points, x* = x

That is, Newton’s method indeed converges to a zero of f ]

4. INVERSE FUNCTION THEOREM

As another consequence, we can prove the celebrated Inverse Function
Theorem in Analysis.

Goal: If y = f(z), when can we solve for x in terms of y? That is,
when can we write z = g(y) where ¢ is a smooth function?

Example 1: If f(z) = 2 then g(y) = y3. Notice g is differentiable
except at 0, and 0 is precisely the point where f'(z) =0

Example 2: If f(z) = 2% then we can’t find a global inverse (valid
for all z) since f isn’t one-to-one, but our hope is to do this locally,

around a point. Once again there is no inverse when f'(z) = 0.

In short, we would like to say “As long as f'(z) # 0, we can solve for
x in terms of y, at least locally”

Moreover, if n = 1 if f(g(x)) = x then differentiating this, we get
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1
flgx)d(z) =1= ¢ () = ——~—
(9(a))g/ () @)=
This was used in Calculus to get the derivatives of In(z) or sin'(x)
for example.
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