
LECTURE: INVERSE AND IMPLICIT FUNCTION
THEOREMS

1. Inverse Function Theorem

Goal: If y = f(x), when can we solve for x in terms of y? That is,
when can we write x = g(y) where g is a smooth function?

Intuitively, we would like to say: As long as f ′(x) ̸= 0, we can solve
for x in terms of y, at least locally, and moreover

g′(x) =
1

f ′(g(x))

Which follows by differentiating the equation f(g(x)) = x

Inverse Function Theorem:

Let F : Rn → Rn be C1 and suppose DF (x0) is invertible at x0.

Then F is invertible in a neighborhood of x0. More precisely:

(1) There exist neighborhoods U of x0 and V of y0 = F (x0)
such that the restriction F |U : U → V is a bijection.

(2) The inverse function G : V → U is also continuously dif-
ferentiable, and for y ∈ V

DG(y) = [DF (G(y))]−1

1
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Proof-Outline:

WLOG, assume x0 = 0

STEP 1: Since DF (0)−1DF (x) is continuous at x = 0 and
DF (0)−1DF (0) = I we can find δ > 0 such that for all ∥x∥ ≤ δ, DF (x)
is invertible and

∥I −DF (0)−1DF (x)∥ ≤ 1

2

STEP 2: Let B = B(0, δ)

Given a parameter y define the “Newton Map”

N(x; y) = x−DF (0)−1(F (x)− y).

Notice x is a fixed point of N(·; y) if and only if y = F (x)

STEP 3: We just need to verify the hypotheses of the Banach fixed
point theorem, that is show (will be skipped)

(1) N(·; y) : B → B for all y in a neighborhood V of f(0).

(2) N(·; y) is contraction on B.

STEP 4: Then, for all y ∈ V , use the Banach fixed point theorem
to find a unique x ∈ B such that f(x) = y. Let f−1(y) be this unique x.

STEP 4: Show f−1(y) is continuous and differentiable on V . This can
be done directly but it’ll be much easier once we prove the Uniform
Contraction Mapping Principle below. □
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2. Implicit Function Theorem

On the other side of the coin is the Implicit Function Theorem.

Goal: Suppose you have an equation of the form F (x, y) = 0, can you
solve for one variable in terms of the other one(s)?

Example 1: Let F (x, y) = x2 + y2 − 1 = 0, that is x2 + y2 = 1.
Then you can solve for y in terms of x because y = ±

√
1− x2. This

expression fails precisely when y = 0 that is when Fy = 0 (this is the
derivative of F with respect to the variable you want to solve for)

Moreover, we can calculate dy
dx in terms of partial derivatives:

(
x2 + y2 − 1

)′
=(0)′

2x+ 2y
dy

dx
=0

dy

dx
=− 2x

2y
dy

dx
=− Fx

Fy

Notice how the x and y get switched in the right-hand-side. Again,
notice how this is defined when Fy ̸= 0

Example 2: To prep for the notation of the Implicit Function Thm:

Let n = 3 (number of x variables) and m = 2 (number of y variables),
and define

F : R3+2 → R2 by F = (F1, F2) where
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F1(x1, x2, x3, y1, y2) =x1y2 − 4x2 + 3 + 2ey1

F2(x1, x2, x3, y1, y2) =2x1 − x3 + y2 cos(y1)− 6y1

Notice F (x0, y0) = 0 where x0 = (3, 2, 7) and y0 = (0, 1)

Question: Can we solve for y in terms of x, for x near x0 = (3, 2, 7)?

The implicit function theorem says yes provided that “Fy ̸= 0” (the
derivative with respect to the variable you want to solve for is nonzero)

[F ′(x, y)] =

[[
y2 −4 0
2 0 −1

]
|

[
2ey1 x1

−y2 sin(y1)− 6 cos(y1)

]]
=

[
Fx | Fy

]
[F ′(x0, y0)] =

[[
1 −4 0
2 0 −1

]
|

[
2 3
−6 1

]]
=

[
Fx(x0, y0) | Fy(x0, y0)

]
Here all you need to check here is that Fy(x0, y0) is invertible, but

|Fy(x0, y0)| =
∣∣∣∣ 2 3
−6 1

∣∣∣∣ = 2 + 18 = 20 ̸= 0 YES

Then the implicit function theorem then that there is a function y =
G(x) from a neighborhood W of x0 = (3, 2, 7) (x variables) to Rm such
that F (x,G(x)) = 0 (the equation is satisfied)

Moreover, we can calculate G′(3, 2, 7) via

G′(3, 2, 7) = − (Fy)
−1 Fx = −

[
2 3
−6 1

]−1 [
1 −4 0
2 0 −1

]
= − 1

20

[
5 4 −3

−10 12 2

]
Looking at the (1, 2) entry for example, this tells us ∂y1

∂x2
= − 4

20 = −1
5

Compare this once again with the dy
dx = −Fx

Fy
condition from Example 1.
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Implicit Function Theorem:

Suppose F : Rn+m → Rm is C1 and F (x0, y0) = 0 for some (x0, y0)

If detFy(x0, y0) ̸= 0, then there is an open neighborhood U of
(x0, y0) and an open neighborhood W of x0 and a function G :
W → Rm differentiable at x0 such that

{(x, y) ∈ U | F (x, y) = 0} = {(x,G(x)) | x ∈ W}

Moreover G′(x0) = − (Fy(x0, y0))
−1 Fx(x0, y0)

In other words, if the derivative with respect to the variable you want
to solve for is invertible, then the equation F (x, y) = 0 is locally the
graph of a function y = G(x).

Application: This theorem is extremely useful in PDEs. Lots of
PDEs, especially first-order ones, are usually given by implicit equa-
tions of the form F (x, u,∇u) = 0. The implicit function theorem can
then be used to solve for u in terms of x, provided some “nondegen-
eracy” condition holds, which is usually equivalent to the assumption
above.

Proof:1

Surprisingly, the Implicit function theorem and Inverse function theo-
rem are equivalent (notice they both solve for one variable in terms of
another one), so our goal is to apply the Inverse Function Theorem to
a cleverly designed function

1The proof is taken from this website

https://math.unm.edu/~crisp/courses/math402/spring15/implicit.pdf
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STEP 1: Given our F , define f : Rn+m → Rn+m by

f(x, y) = (x, F (x, y))

Goal: Apply the Inverse function theorem to f at a = (x0, y0)

First show that f ′(a) is invertible. However

[f ′(x, y)] =

[
In×n 0n×m

Fx Fy

]
Hence [f ′(a)] =

[
In×n 0n×m

Fx(x0, y0) Fy(x0, y0)

]
It then follows from cofactor expansion along the first n rows that

det[f ′(a)] = det[Fy(x0, y0)] ̸= 0

Where the last step follows precisely because Fy(x0, y0) is invertible

STEP 2: Hence f ′(a) is invertible and therefore by the Inverse Func-
tion Theorem there is an open set U containing (x0, y0) and an open
set V containing f(x0, y0) such that f : U → V is invertible.

Moreover, f−1 : V → U is differentiable at f(x0, y0) and(
f−1

)′
(f(x0, y0)) = (f ′(x0, y0))

−1

Note: f(x0, y0) = (x0, F (x0, y0)) = (x0, 0)

Write f−1 in terms of components as f−1 =: (h, g)

STEP 3: Define W and G as follows:

W =: {x ∈ Rn | (x, 0) ∈ V }
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(Think of it kind of like an x-axis of V )

G(x) =: g(x, 0) for x ∈ W

Notice W is nonempty since x0 ∈ W and W is open since W is just a
projection of V on Rn.

Since f−1 is differentiable at (x0, 0) and g is a component of f−1 it
follows that g is differentiable at (x0, 0) ∈ V and so G is differentiable
at x0.

STEP 4: Let’s show

{(x, y) ∈ U | F (x, y) = 0} = {(x,G(x)) | x ∈ W}

Let A be the left hand side and B be the right-hand-side, and show
each set is contained in the other.

A ⊆ B : If (x, y) ∈ A then (x, y) ∈ U and F (x, y) = 0 from which it
follows that f(x, y) = (x, F (x, y)︸ ︷︷ ︸

0

) = (x, 0)

Since (x, 0) ∈ V (range of f), by definition x ∈ W and from f(x, y) =
(x, 0) we get (x, y) = f−1(x, 0) = (h(x, 0), g(x, 0))

Comparing components, this implies y = g(x, 0) = G(x) which implies
that (x, y) = (x,G(x)) and since we’ve shown x ∈ W , we get that
(x, y) ∈ B

Hence A ⊆ B and similarly we have B ⊆ A

STEP 5: The only thing left to show is the formula for the derivatives
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Note: G(x0) = y0 because f(x0, y0) = (x0, 0) implies f−1(x0, 0) =
(x0, y0) and comparing the second component we get g(x0, 0) = y0 so
G(x0) = y0

Since F (x,G(x)) = 0 for all x ∈ W , F is differentiable at (x0, G(x0)) =
(x0, y0), and G is differentiable at x0, by the Chain Rule, we have

(F (x,G(x)))′ =0

Fx(x0, y0) + Fy(x0, y0)G
′(x0) =0

Fy(x0, y0)G
′(x0) =− Fx(x0, y0)

G′(x0) =− (Fy(x0, y0))
−1 Fx(x0, y0) □

Note: It is also true that if F is Ck then G is Ck as well.

As mentioned above, the Implicit Function Theorem implies the In-
verse Function Theorem, so both of them are equivalent.

3. Application to ODE

Another application of the Banach fixed point theorem is to prove the
existence-uniqueness theorem for ODE

In this setting, consider the ODE


du

dt
=f(u(t))

u(0) =u0
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Picard-Lindelöf Theorem:

If f is Lipschitz and u0 ∈ R, then for some small τ > 0, there
exists a solution y : [−τ, τ ] → R of the ODE above

Note: The solution is “locally unique,” in the sense below.

Compare this to the Cauchy-Peano Theorem. That theorem only re-
quired continuity, but gave no uniqueness. This one assumes more,
but gives a better result

Proof:2

STEP 1: Main Observation: By integrating the ODE, it is equiv-
alent to

∫ t

0

u′(s)ds =

∫ t

0

f(u(s))ds

u(t)− u0 =

∫ t

0

f(u(s))ds

u(t) =u0 +

∫ t

0

f(u(s))ds

STEP 2: Let τ > 0 TBA

Since f is continuous, it is bounded around u0: There is some r > 0
and C > 0 such that |f(x)| ≤ C for all x ∈ [u0 − r, u0 + r].

2The proof is a simplified version of the one in Theorem 24 of Pugh’s book
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Let X be the space of continuous functions u : [−τ, τ ] → [u0−r, u0+r]
with the sup norm.

Given u ∈ X, define Φ(u) ∈ X (to be shown) by

Φ(u)(t) = u0 +

∫ t

0

f(u(s))ds

We’re done once we show that Φ has a fixed point u, because then
Φ(u) = u and we get

u(t) = u0 +

∫ t

0

f(u(s))ds✓

STEP 3: Proof that Φ is a contraction

First show that Φ : X → X: Notice that if u is continuous, then
∫ t

0 f(u)
is continuous (in fact differentiable) and hence Φ(y)(t) is continuous.
Moreover

|Φ(u)(t)− u0| =
∣∣∣∣∫ t

0

f(u(s))ds

∣∣∣∣ ≤ ∫ t

0

|f(u)| ds ≤
∫ t

0

Cds = Ct ≤ Cτ ≤ r

Provided you choose τ such that τC ≤ r

Hence Φ(u) ∈ [u0 − r, u0 + r] and so Φ(u) ∈ X.



LECTURE: INVERSE AND IMPLICIT FUNCTION THEOREMS 11

Moreover, Φ is a contraction because

d(Φ(y),Φ(z)) = sup
t

∣∣∣∣u0 + ∫ t

0

f(y(s))ds−
(
u0 +

∫ t

0

f(z(s))ds

)∣∣∣∣
≤ sup

t

∣∣∣∣∫ t

0

f(y(s))− f(z(s))ds

∣∣∣∣
≤ sup

t

∫ t

0

|f(y(s))− f(z(s))| ds

≤
∫ τ

0

|f(y(s))− f(z(s))| ds (the integral is increasing in t)

≤
∫ τ

0

(
sup
s

|f(y(s))− f(z(s))|
)
ds

=

(
sup
s

|f(y(s))− f(z(s))|
)∫ τ

0

1

≤L sup
s

|y(s)− z(s)| τ

=Lτd(y, z)

This becomes a contraction provided we choose τ so that Lτ < 1

STEP 4: Uniqueness

Any other solution z(t) is also a fixed point of Φ, that is Φ(z) = z.
Since a contraction has a unique fixed point, we have z = y. This is
what local uniqueness means. □

4. Uniform Contraction Mapping Principle

The following is a generalization of the Banach fixed point theorem.

Main Idea: Suppose we have family of contraction maps F (x;µ) in-
dexed by a parameter µ. For each value of the parameter µ, F (·;µ)
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has a unique fixed point (by the Banach fixed point theorem). Let
G(µ) map each value of µ to that unique fixed point. The Uniform
Contraction Mapping Principle says that the map G is as smooth as
the original map F .

We will first need one technical result involving bounds on derivatives
of Lipschitz functions.

Fact:

Let X and Y be Banach spaces, U ⊆ X open and F : U → Y
differentiable. If F is Lipschitz with constant L, then

∥DF (x)∥ ≤ L for all x ∈ U

Proof: Let ϵ > 0 and x ∈ U . Since F is differentiable at x, we can
find δ > 0 such that, whenever ∥h∥X < δ

∥F (x+ h)− F (x)−DF (x)h∥Y
∥h∥X

< ϵ.

Let u ∈ U be a unit vector, and let h = δ
2u so that ∥h∥X < δ.

Then since u = h/∥h∥X , we have

∥DF (x)u∥ =
∥DF (x)h∥Y

∥h∥X

≤ ∥DF (x)h− (F (x+ h)− F (x))∥Y + ∥F (x+ h)− F (x)∥Y
∥h∥X

=
∥F (x+ h)− F (x)−DF (x)h∥Y

∥h∥X
+

∥F (x+ h)− F (x)∥Y
∥h∥X

LIP
≤ ϵ+

L∥h∥X
∥h∥X

= ϵ+ L,
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Since ϵ is arbitrary, we have ∥DF (x)∥ ≤ L for all x ∈ U □

Definition:

F : D×B → D is a uniform contraction if there is L < 1 such
that for all µ ∈ B and all u, v ∈ D, we have

|F (u, µ)− F (v, µ)| ≤ L|u− v|

Definition:

F is uniformly Lipschitz in µ if there exists a constant M > 0
such that for all u ∈ D and µ1, µ2 ∈ B,

|F (u, µ1)− F (u, µ2)| ≤ M |µ1 − µ2|

Uniform Contraction Mapping Principle:

Let X be a Banach space and D ⊆ X be a closed and nonempty
subset of X

Let Y be a Banach space (parameter space) and B ⊆ Y an open
subset of Y

Suppose F : D ×B → D is a uniform contraction

Let G : B → D be be the map which associates every µ ∈ B with
the unique fixed point of F (·;µ), then:

(1) If F is uniformly Lipschitz in µ then G is Lipschitz
continuous

(2) If F ∈ Ck(D ×B,X) for k ≥ 0, then G ∈ Ck(B,X)
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Proof:

STEP 1: Define G(µ) as in the statement of the theorem. By the
Banach fixed point theorem, G : D → B is the unique function such
that F (x;µ) = x if and only if x = G(µ).

|G(µ1)−G(µ2)| = |F (G(µ1);µ1)− F (G(µ2);µ2)|
≤ |F (G(µ1);µ1)− F (G(µ1);µ2)|+ |F (G(µ1);µ2)− F (G(µ2);µ2)|
≤ |F (G(µ1);µ1)− F (G(µ1);µ2)|+ L|G(µ1)−G(µ2)|.

(1− L)|G(µ1)−G(µ2)| ≤ |F (G(µ1);µ1)− F (G(µ1);µ2)|.

Finally, divide by (1− L) to get

|G(µ1)−G(µ2)| ≤
1

1− L
|F (G(µ1);µ1)− F (G(µ1);µ2)|.

If F is continuous in both variables (which is part (ii) with k = 0, then
the RHS above → 0 as µ2 → µ1, thus G is continuous.

STEP 2: For part (1), if F is uniformly Lipschitz in µ, then the RHS
in the previous step becomes

|G(µ1)−G(µ2)| ≤
M

1− L
|µ1 − µ2|

STEP 3: All that remains is consider part (2) with k > 0. We first
consider the case k = 1, i.e. F is continuously differentiable.

We will first find a candidate for DG(µ) and then show that this is the
derivative of G
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Recall that G(µ) = F (G(µ), µ). If G were differentiable, then we would
have

DG(µ) = DF (G(µ), µ) = DXF (G(µ), µ)DG(µ) +DBF (G(µ), µ)

This means that DG(µ) would be a fixed point of the mapping Φ :
L(B,X)×B → L(B,X), defined by

Φ(A;µ) = DXF (G(µ), µ)A+DBF (G(µ), µ).

The map Φ is a uniform contraction, since for A1, A2 ∈ L(B,X),

|Φ(A1;µ)− Φ(A2;µ)|
=|DXF (G(µ), µ)A1 +DBF (G(µ), µ)− (DXF (G(µ), µ)A2 +DBF (G(µ), µ))|
=|DXF (G(µ), µ)(A1 − A2)|
≤∥DXF (G(µ), µ)∥ |A1 − A2|
≤L|A1 − A2|

where the last line follows from the previous proposition and the fact
that F (·;µ) is Lipschitz with constant L.

STEP 4: Since L < 1, by the Banach fixed point theorem, there exists
a function Z : B → L(B,X) which maps each µ ∈ B to the unique
fixed point Z(µ) of Φ(·;µ). Since F is C1, Φ is continuous, thus by the
k = 0 case of part (2) of the Uniform Contraction Mapping Principle
the map Z(µ) is continuous.

The function Z(µ) is our candidate for DG(µ). All that remains is to
use the definition of the derivative to show that Z(µ) is actually the
derivative. This is technical and will be omitted 3. We then repeat
this argument for k > 1 for higher order derivatives. □

3You can find the complete proof in Lemma 7.2.9 on pages 284-285 of Humpherys, Jarvis, and
Evans (2017)
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