
LECTURE: INTEGRATION AND ODE

1. The Darboux Integral

Let f : [a, b] → R be a bounded function. The Darboux integral is
defined as follows.

STEP 1: First, partition the domain [a, b]. Let P be the partition

P = {a = x0 < x1 < · · · < xn−1 < xn = b}

where n is arbitrary.

(The picture uses tk instead of xk)

STEP 2: Define the upper and lower sums on P by

U(f, P ) =
n−1∑
j=0

(xj+1 − xj) sup
x∈[xj ,xj+1]

f(x)

L(f, P ) =
n−1∑
j=0

(xj+1 − xj) inf
x∈[xj ,xj+1]

f(x).

1
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Notice that refining a partition causes U(f, P ) to decrease and L(f, P )
to increase

STEP 3:
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Definition:

The function f is Darboux integrable on [a, b] if

inf
P

U(f, P ) = sup
P

L(f, P )

If this holds, we denote the Darboux integral by
∫ b

a f(x)dx.

A convenient integrability criterion is the following:

Darboux Integrability Criterion:

f is Darboux integrable on [a, b] if, for every ϵ > 0, we can find a
partition P such that

U(f, P )− L(f, P ) < ϵ.

2. The Riemann Integral
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This is in contrast with the Riemann Integral:

Choose a tagged partition (P, t) of [a, b] that is a partition P given by

P = {a = x0 < x1 < · · · < xn−1 < xn = b}

together with n points {t0, t1, . . . , tn−1}, with one selected from each
subinterval of the partition, i.e. tj ∈ [xj, xj+1]. Common choices for
the tags ti are the left endpoints, the right endpoint, and the midpoints
of the partition intervals, although the choice of tags does not matter
from a theoretical standpoint.

(The picture has xi and ti switched)

The mesh size of the partition is the maximum length of the partition
subintervals, i.e.

∆P = max
j=0,...,n−1

(xj+1 − xj).

Typically, each partition subinterval is chosen to be the same size,
although this need not be the case.
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Definition:

The Riemann sum corresponding to (P, t) is

R(f, P ) =
n−1∑
j=0

(xj+1 − xj)f(tj).

Definition:

The function f is Riemann integrable with integral S if, for all
ϵ > 0, there exists δ > 0 such that

|R(f, P )− S| < ϵ

for all tagged partitions (P, t) with mesh size ∆P < δ
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It can be shown that Riemann integrability and Darboux integrability
are equivalent.

3. Advantages and Disadvantages

Advantages of Riemann Integral:
• You can compute them exactly with the fundamental theorem
of calculus (as long as you can find an antiderivative!)

• The definition is intuitive, and captures the idea of finding the
area under a curve by successive approximation.

• The approximating Riemann sums are easy to compute numer-
ically.

• Many useful classes of functions are Riemann integrable:

(1) Continuous functions on [a, b].

(2) Bounded functions on [a, b] which are continuous except at
a finite number of points.

(3) Bounded, monotonic functions on [a, b].

Disadvantages of Riemann Integral:

• It is difficult to extend to domains that are not open subsets of
Rn.

• It is difficult to extend to unbounded domains, such as all of R.
As in calculus class, you can define an “improper integral” as
the limit of integrals on bounded intervals, although the best
way to do this is not always clear.
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• Some important functions are not Riemann Integrable

Non-Example 1:

Consider the following function on [0, 1]:

f(x) =

{
0 if x is rational

1 if x is irrational

Then sup f = 1 and inf f = 0 on each sub-piece

U(f, P ) =
n∑

k=1

1(xk − xk−1)

=xn − x0
=1− 0

=1

Since U(f, P ) = 1 for all P , infP U(f, P ) = 1
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L(f, P ) =
n∑

k=1

0(xk − xk−1) = 0

Therefore supL(f, P ) = 0

Since 0 ̸= 1, f is not Darboux integrable

• The limit of a sequence of Riemann integrable functions is not
necessarily Riemann integrable.

Non-Example 2:

Enumerate the rational numbers in [0, 1] as r1, r2, · · · , and
define the sequence of functions fn : [0, 1] → R by

fn(x) =

{
1 x ∈ r1, . . . , rn

0 otherwise.

Since fn has only a finite number of discontinuities, fn is Rie-
mann integrable with∫ 1

0

fn(x)dx = 0.

For every x ∈ [0, 1], fn(x) → χQ(x), but χQ(x) is not Riemann
integrable on [0, 1].

A final disadvantage (and perhaps the most important one), is that
it is hard to find good criteria that allow us to exchange limits and
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integration. We would like to find conditions for which

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx,

i.e. the limit of the integrals is the integral of the limit. The best we
can do, in general, is if we have a uniformly convergent sequence of
functions on a bounded interval.

Theorem:

For all n ∈ N, let fn : [a, b] → R be a Riemann integrable func-
tions, and suppose the sequence of functions {fn} converges uni-
formly to f . Then f is Riemann integrable, and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx

Proof: Let ϵn = supx∈[a,b] |fn(x)− f(x)| so that

fn(x)− ϵn ≤ f(x) ≤ fn(x) + ϵn on [a, b]

Since {fn} converges to f uniformly we have ϵn → 0

Then we have∫ b

a

fn(x)dx− (b− a)ϵn =

∫ b

a

(fn(x)− ϵn)dx = sup
P

LP (fn(x)− ϵn)

= sup
P

n−1∑
j=0

(xj+1 − xj) inf
x∈[xj ,xj+1]

(f(x)− ϵn)

≤ sup
P

n−1∑
j=0

(xj+1 − xj) inf
x∈[xj ,xj+1]

f(x)

= sup
P

LP (f),
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where P is an arbitrary partition of [a, b]. Similarly,

inf
P

Up(f) ≤
∫ b

a

fn(x)dx− (b− a)ϵn

Putting these together

∫ b

a

fn(x)dx− (b− a)ϵn ≤ sup
P

L(f, P ) ≤ inf
P

U(f, P ) ≤
∫ b

a

fn(x)dx− (b− a)ϵn.

This rearranges to

0 ≤ inf
P

U(f, P )− sup
P

LP (f) ≤ 2(b− a)ϵn → 0 □

Non-Example 3:

To show that we really need uniform convergence in the above,
consider

fn(x) = nx
(
1− x2

)n
Then can check that fn → 0 pointwise on [0, 1]

Now if the above result were true, then we would have
∫ 1

0 fn(x)dx →∫ 1

0 0dx = 0, but using the u−sub u = 1− x2, it follows that

∫ 1

0

fn(x)dx =

∫ 1

0

nx
(
1− x2

)n
dx =

n

2n+ 2
→ 1

2
̸= 0

Moreover, the main issue is that uniform convergence is, in a sense,
too strong condition.
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Example 4:

Consider the sequence of functions fn(x) = xn on [0, 1]. For the
limit, fn(x) → f(x), where

f(x) =

{
0 x ∈ [0, 1)

1 x = 1,

but this convergence is not uniform.

However, we still have

lim
n→∞

∫ 1

0

fn(x)dx = lim
n→∞

1

1 + n
= 0 =

∫ 1

0

f(x)dx.

Even though the convergence is not uniform, the limit of the integrals
is equal to the integral of the limit. Something else must be going on,
and we would like to have a theory which explains this case.

Note: The Lebesgue integral, which we’ll define later, resolves most
of the weaknesses of Riemann integral. The main drawback is that, in
most cases you cannot actually compute an integral using the Lebesgue
formulation, and you have to fall back on the fundamental theorem of
calculus from Riemann integration theory. Luckily, if a function is Rie-
mann integrable, it is also Lebesgue integrable, and the two integrals
are the same!

4. More ODE Existence-Uniqueness

Consider once again the initial value problem (IVP) on Rn
du

dt
= f(u)

u(0) = u0
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Question: How does the solution u depend on u0?

Definition:

f : Rn → Rn is locally Lipschitz if for every x ∈ Rn there are
δ > 0 and L such that for all y, z ∈ B(x, δ)

|f(y)− f(z)| ≤ L |y − z|

Picard-Lindelöf (general version):

Suppose that f is locally Lipschitz and consider the IVP above.

Then for every u ∈ Rn there is δ > 0 and a time interval [−r, r]
such that:

(1) For each initial condition u0 ∈ B (u, δ) the IVP has a
unique solution u(t;u0) on [−r, r]

(2) The map u0 7→ u(·;u0) is Lipschitz in u0

(3) If f is Ck for k ≥ 1, then

(a) The solution u(t;u0) is C
k+1 in t

(b) The map u0 7→ u(·;u0) is Ck in u0

Let’s now look at what happens when a solution to an ODE approaches
the boundary of the region where the solution exists. The following
theorem shows that such a solution must blow up at the boundary
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Blow-up at boundary:

Suppose f : Rn → Rn is C1 and u(t) satisfies the IVP above on
an interval [0, T )

Suppose there is no solution to the IVP on the interval [0, T + ϵ)
for any ϵ > 0

Then |u(t)| → ∞ as t → T . That is, the solution blows up at the
boundary of the time interval

Proof: We prove this by contradiction. The main idea is that if we
assume u(t) remains bounded, we can construct a solution to the IVP
which exists on a larger time interval, i.e. at time t > T

STEP 1: Suppose this is not true. Then there is some sequence of
times {tn} with tn ↗ T such that {u(tn)} remains bounded, i.e. there
exists a constant K such that |u(tn)| ≤ K for all n

Since {u(tn)} is a bounded sequence in Rn, by the Bolzano-Weierstrass
theorem, it has convergent subsequence. Passing to this subsequence
if needed, we may assume that u(tn) → u

STEP 2: Now consider the same IVP but with u(0) = u0 where u0 is
close to u.

By the general Picard-Lindelöf there is δ > 0 and an interval [−r, r]
such that for all initial conditions u0 ∈ B (u, δ) there is a unique solu-
tion u(t) for t ∈ [−r, r] with u(0) = u0.

Since f does not depend on t, we can translate these unique solutions
in time, i.e shift them to different starting times. In other words, for
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each u0 ∈ B (u, δ), there is a family of unique solutions u(t; τ) on the
interval [τ − r, τ + r] with u(τ ; τ) = u0

Since tn ↗ T and u(tn) → u, choose an integer m sufficiently large so
that tm > T − r/2 and u(tm) ∈ B (u, δ). Consider the IVP


dv

dt
= f(v)

v(t∗) = u∗

Where t∗ = tm and u∗ = u(tm). By what we showed above, this IVP
has a unique solution v(t) for t = [t∗ − r, t∗ + r].
STEP 3: By uniqueness (since f is locally Lipschitz), we can combine
these solutions together, since we can stop u(t) at (t∗, u∗), and v(t)
starts at (t∗, u∗). Thus we have the following solution to the original
IVP:

w(t) =

{
u(t) T ∈ [0, t∗]

v(t) T ∈ [t∗, t∗ + r].

Since t∗ + r > T , this solution exists on a larger interval than [0, T )
⇒⇐ □

The existence result from the Picard-Lindelöf theorem is only a local
existence result. If we have a linear system, however, we have a global
existence result:
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Global Existence for Linear Systems:

Consider the system 
du

dt
= A(t)u

u(0) = u0,

where u ∈ Rn and A : R → Rn×n is continuous. Then there exists
a unique solution u(t) which exists for all t ∈ R.

Proof:

STEP 1: Write the ODE as u̇ = f(u, t) with f(u, t) = A(t)u. Since
f(u, t) is Lipschitz in u on every bounded interval [−T, T ] the IVP has
a unique solution u(t) for t in an interval containing 0.

We wish to show that u(t) exists for all t ∈ R. Suppose this solution
exists on [0, t0), but not on any larger interval [0, t0 + ϵ). Then u(t)
must blow up as it approaches t0.

STEP 2: Integrate the ODE

u(t) = u0 +

∫ t

0

A(τ)u(τ)dτ t ∈ [0, t0)

Hence |u(t)| ≤ |u0|+
∫ t

0

∥A(τ)∥ |u(τ)|dτ t ∈ [0, t0)

Here ∥A(τ)∥ is the operator (matrix) norm of A(t)
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STEP 3: This satisfies the hypotheses of Gronwall’s Inequality. Thus,
for t ∈ [0, t0)

|u(t)| ≤ |u0| exp
(∫ t

s

∥A(τ)∥dτ
)

≤ |u0| exp
(∫ t0

s

∥A(τ)∥dτ
)

≤ C|u0|

Hence u(t) cannot blow up as t → t0, it must u(t) must exist for all
t ≥ 0. A similar argument shows that u(t) must exist for all t ≤ 0.
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