APMA 0350 - FINAL EXAM

Name	
Brown ID	
Signature	

1. (5 points) Solve the ODE and write your answer in explicit form

$$
\left\{\begin{aligned}
y^{\prime} & =4 t\left(y^{2}+1\right) \\
y(0) & =1
\end{aligned}\right.
$$

\square
$y=\square$
2. (5 points) Solve the following exact ODE and write your answer in explicit form. Don't forget to check for exactness

$$
\left\{\begin{array}{c}
\left(\frac{2 x}{y}+4\right) d x-\left(\frac{x^{2}}{y^{2}}\right) d y=0 \\
y(2)=1
\end{array}\right.
$$

\square

3. (5 points) Find the eigenvalues and eigenfunctions of

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y^{\prime}(0) & =0 \\
y^{\prime}(4) & =0
\end{aligned}\right.
$$

Eigenvalues	
Eigenfunctions	

4. (5 points) Solve using undetermined coefficients

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y & =12 t^{2}+20 t+30 \\
y(0) & =8 \\
y^{\prime}(0) & =-3
\end{aligned}\right.
$$

\square
$y=$
5. (5 points) Use the Laplace transform to solve the following ODE

$$
\left\{\begin{aligned}
y^{\prime \prime}+2 y^{\prime}+2 y & =f(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned} \text { where } f(t)=\left\{\begin{array}{lll}
0 & \text { if } 0 \leq t<\pi \\
2 & \text { if } \pi \leq t<2 \pi \\
0 & \text { if } t \geq 2 \pi
\end{array}\right.\right.
$$

\square
6. (5 points) Solve the following Integral Equation

$$
\phi(t)+\int_{0}^{t}(t-\tau) \phi(\tau) d \tau=1
$$

\square
7. $(5=3+2$ points $)$ Suppose you're modeling the population of bunnies between two cities Bunlandia and Doeville. Every day, we simultaneously have

- 60% of bunnies from Bunlandia move to Doeville
- 30% of bunnies from Doeville move to Bunlandia

Assume rabbits can only move between those two cities and that there are no foreign rabbits entering or exiting the two cities.

Let $x(t)$ and $y(t)$ be the number of bunnies in Bunlandia and Doeville respectively, where t is in days.
(a) Set up an ODE model of the form $\mathbf{x}^{\prime}=A \mathbf{x}$ where $\mathbf{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ but do NOT solve it. Include a picture like in the chemical tank model. No justification required.
(b) Use your model in (a) to (mathematically) show that the total population $x(t)+y(t)$ is constant

Hint: How do you show in that a function is constant?

8. (5 points) Use matrix exponentials to solve $\mathbf{x}^{\prime}=A \mathbf{x}$ where

$$
A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

NO phase portrait required. Write your final answer using terms of the form $e^{a t}\left[\begin{array}{l}b \\ c\end{array}\right]$ where a, b, c are integers.

9. (5 points) Use Variation of Parameters to find a particular solution $\mathbf{x}_{\mathbf{p}}$ of $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$ where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad \text { and } \mathbf{f}=\left[\begin{array}{l}
6 e^{4 t} \\
4 e^{3 t}
\end{array}\right]
$$

Do NOT use undetermined coefficients! Write your answer using terms of the form $e^{a t} \times$ Some vector

10. (5 points) Find and classify the equilibrium point(s) of

$$
\left\{\begin{array}{l}
x^{\prime}=(y-x)(1-x-y) \\
y^{\prime}=x(2+y)
\end{array}\right.
$$

Equilibrium Point	Classification

