LECTURE: SECOND-ORDER ODE

Today: How to solve second-order ODE?

1. MODEL PROBLEM

Video: Differential Equations the COOL way

y" =5y + 6y =0

Note: In the Appendix, you can find another way of doing this.

We’ll solve this by “factoring out” the differential equation

Dy=1v and D?*y=y"
STEP 1: Notice you can write the ODE in terms of D:
y" — by’ + 6y =0
D?*y — 5Dy + 6y =0
(D* = 5D +6)y =0
Trick: Factor this out as (D — 2)(D —3)y =0


https://www.youtube.com/watch?v=NutSdXr1it0
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STEP 2: In particular, if you let z = (D —3)y then the ODE becomes

(D —2)(D —3)y =0

EZ/—/
(D—2)z=0
Dz —2z=0
27— 22 =0
2 =2z
2z =Ae?
STEP 3: Now solve for y
2z =Ae*
(D — 3)y =Ae*
y — 3y =Ae*

Use the integrating factor e=%

=3ty — 3¢y — Ae?e 3
(e—Sty)’ —Aet
e Sty = / Ae ldt = —Ae '+ B
y =e” (—Ae”' + B)
Yy :;;4/6% + Be*

A
y =Ae* + Be

Note: Intuitively this makes sense: for first-order equations we had

one constant C', so for second-order equations, we have two constants,
A and B.
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Faster Way: Notice the exponents 2 and 3 come from factoring

D? —5D+6 = (D —2)(D — 3)

The auxiliary equation of v/ — 5y +6y =0isr> —=5r+6 =0
Since 1> = 5r+6=0= (r—2)(r—3)=0=r=2o0rr =3 we get
y = Ae” + Be

But the real reason this works is because of the factoring method above.

2. EXAMPLES

Upshot: To solve second-order ODE, you just need to find the roots
of the auxiliary equation.

y' +5y +4y=0

Aux: P +5r+4=0=(r+1)(r+4)=0=r=—lorr=—4
y=Ae "4+ Be ¥
Example 3:

y'+y — 6y =0
y(0) =2
y'(0)=—1
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Aux: " +7r—6=0=(r+3)(r—2)=0=r=-3orr =2

y = Ae * + Be*

y(0)=2=Ae30 1 B2V =925 A4+ B=2=B=2-A

y=Ae '+ (2 — A)e*

y'(t) = A(=3e") + (2 — A)2¢e*

' (0) = — 34e" 4+ 2(2 — A)e’
=—34+4-2A
= —5A+4
=1

Hence —hbA=-5H=A=1

y = A673t + (2 . A)€2t — 67315 _|_62t
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(It’s not a parabola, but rather a hyperbolic function like cosh)

Example 4: (More practice)

When does y in the previous example attain its minimum?

From Calculus 1, all you need to do here is to set ¢y = 0
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y =0
(e_?’t + eZt)/ =0
—3e73 4+ 2¢2 =0

2e* =3¢~
e 3
e 2
3

2

n()
-()u()

t ~0.081

Sometimes you have to use the quadratic formula:

Example 5: (More practice)

dy" =8y — 3y

Same as 4" — 8y + 3y =0
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Yy = Ae? + Be?

The cool thing is that everything we learn about second order equa-
tions generalizes easily to higher-order ones as well:

Example 6:

y" —6y" + 11y — 6y =0

Aux: P —6r2+11r—6=0

You are not responsible for knowing how to factor out cubic polyno-
mials, but suppose someone tells you that this factors as

(T_l)(r_g)(r_g):():wr:lorr:20rr:3

Then the general solution is

y = Ae' + Be* + Cet
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3. REPEATED ROOTS

Video: Cool Repeated Roots ]

What if our auxiliary equation only has one root?

y' =4y’ +4y =0

Aux: 7 —4r +4=0= (r—2)=0=r=2 Repeated Twice

The only difference is that, instead of writing Ae? 4+ Be? which is
redundant, you add an extra ¢ to the second term:

y = Ae* + Bte”

Why? Let’s use the factoring method again!

STEP 1:

(D* — 4D + 4)y =0
(D —2) (D —2)y =0
N——

z

2 — 22 =0

2 =Ae*

STEP 2:


https://www.youtube.com/watch?v=nrTepKXotR4
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(D —2)y =z
y/ . 2y :A62t
=2ty — 2e72y — A
(e*%y)/ =A

ey = / Adt = At+ B (here is where the t comes from)

Yy —Ate®t + Be?t

Note: Another way to show this (which was on the homework) is

(e—zty)” _ (—26_2ty + 6—2ty/)’
:(_2)(_2)6—2ty . 26_%3/ o 26_2ty' + B—Zty//
:46—2ty . 46—2ty/ + e—2ty//
—c 2 W' =4y +4y)
0

=0

(e_%y)” —0
= (e*%y)/ =B
=e y=DBt+ A
=y = e* (A + Bt)
=y = Ae* + Bte*

Which is the same solution as above!
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Example 8:

y' =6y +9y =0
y(0) =1
y'(0)=-3

Aux: 7 —6r +9=0= (r —3)? = 0= r = 3 Repeated

y = Ae’' + Bte!

y(0)=1= A" + B(0)e’ =1= A =1

y = (" + Bt63t)/ = 3¢* + Be’ + Bt(3¢*)

y'(0)=-3
3e" 4+ Be’ 4+ B(0)(3e") = — 3
3+B=-3
B=-3-3
B=—-6

y = e — 6te
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Based on the graph above, it looks like the solutions has a maximum
slightly before t = 0. Let’s find it!

Example 9: (extra practice)

Where does y as above attain a max?

We just need to set ¢ =0

y/ _ (63t _ 6te3t)/
=3e” — 6e” — 6t (3¢™)
= — 3e3 — 18te™
— (=3 — 18t) *
=0
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— 1
318 =0=>t=— = —=~ —0.1667
18 6

4. APPENDIX: OTHER METHOD

Here is another way of solving second-order ODE, which is easier to
use, but less intuitive:

Example 10:

Solve 3" — 5y’ + 6y =0

We'll do this by analogy with first order equations:

Recall: (Basic ODE)

y =ry =y =Ce"

Idea: Exponential functions are so useful, let’s try out the same guess.

Plug in €™ in y" — 5y + 6y = 0:
()" =5 (") + 6™ =0
r2e — 5re 4 6e"t =0
(7"2 — 57‘+6)£%:0
r? — 5r +6 =0

P —5r+6=0=(r—-2)(r-3)=0=r=2,3
e r =2 and r = 3 tells us that €2 and e are solutions

e A constant times a solution is still a solution, so Ae* and Be?!
are solutions
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e The sum of two solutions is still a solution, so Ae? + Be® is a
solution. This gives us one solution of the ODE.

e Using y(0) and 3/(0) we can (in theory) solve for A and B

e Uniqueness says this is the only solution, so y = Ae* + Be¥

The general solution is y = Ae* + Be® where A and B are con-
stants.

Note: Intuitively this makes sense: for first-order equations we had

one constant C, so for second-order equations, we have two constants,
A and B.

Note: In theory, it’s possible to get redundant solutions, like e’ and
e?! There is a tool called the Wronskian that checks that if the solu-
tions are linearly independent (not redundant) or not.
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