
LECTURE: PROBABILITY AXIOMS

1. Basic Set Operations

Let S be any set (sample space) and A and B be two subsets of S
(events), then we can define the following:

Definition: The union A ∪ B of A and B is the set of all elements
which are either in A or B (or both)

In other words, all elements that are in at least one of the sets

Definition: The intersection of A ∩ B of A and B is the set of all
elements which are in both A and B
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Definition: Two events A and B are disjoint or mutually exclu-
sive if they have no elements in common, ie A ∩B = ∅

Definition: The complement Ac is the set of all points in S that are
not in A

Distributive Laws:

A ∩ (B ∪ C) =(A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) =(A ∪B) ∩ (A ∪ C)

This is much easier understood with examples:
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The first one says: If you order a Burger and a (Coke or Sprite), you
either order a (Burger and Coke) or a (Burger and Sprite)

The second one says: If you take the Final or (Midterm 1 and Midterm
2), you take the (Final or Midterm 1) and (Final or Midterm 2).

De Morgan’s Laws:

(A ∪B)c =Ac ∩Bc

(A ∩B)c =Ac ∪Bc

In other words, whenever you apply c you flip the ∩ with the ∪

In terms of examples, if you don’t eat an (Apple or Banana), you didn’t
eat an Apple and you didn’t eat a Banana. And if you don’t eat both
an apple and a banana, you didn’t eat at least one of them

2. Basic Probability Axioms

We are now ready to define probability in a rigorous way, using axioms

Let S be our sample space and A an event in S

Definition: The Probability P is a function with the following prop-
erty:

(1) For any A, 0 ≤ P (A) ≤ 1

(2) P (∅) = 0

(3) P (S) = 1
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(4) If A ⊆ B then P (A) ≤ P (B)

(5) If A1, A2, A3, · · · are pairwise disjoint (see below) then

P (A1 ∪ A2 ∪ A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · ·

Remarks:

(1) says that the probability is always between 0 and 1; 0 means that
the event will never occur and 1 means the event will always occur.

(2) says that the probability that nothing happens is 0, i.e. something
must happen

(4) says that if we make a set bigger, its probability can only increase
(or stay the same)

(5) needs more explanation: It’s a generalization of the fact that if A
and B are disjoint then P (A ∪B) = P (A) + P (B)

Definition: Sets A1, A2, A3, · · · are pairwise disjoint if Ai ∩Aj = ∅
for i ̸= j

For example, for three sets A,B,C this would mean that A ∩ B =
∅, A∩C = ∅, and B∩C = ∅. This is stronger than saying A∩B∩C = ∅
(see HW)

And (5) says that the probability of the union of disjoint sets is the
sum of the probabilities.

Consequence:

P (Ac) = 1− P (A)
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Recall: An set is simple if it just has one element

Example: Consider once again tossing a single die. The sample space
for this is S = {1, 2, 3, 4, 5, 6}. This sample space contains 6 simple
events: {1} , {2} , {3} , {4} , {5} , {6}. Assuming we have a fair die, we
can let P {n} = 1

6 for n = 1, 2, 3, 4, 5, 6

But we don’t have to do it that way. If we have a crooked die, which
rolls a 6 half the time, we could assign probabilities: P {6} = 1

2 and

P {n} = 1
10 for n = 1, 2, · · · , 5

Example: Consider this time a countable sample space S = {1, 2, 3, · · · }
One possibil- ity is to assign probabilities P {n} = 1

2n for n = 1, 2, 3, · · ·

This works because

∞∑
n=1

P {n} =
∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+ · · · = 1

The last part follows because this is a geometric series with ratio 1
2 .

Here is a picture proof of this fact:
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3. The Uniform Probability Distribution

The first probability distribution we will consider is the uniform dis-
tribution. In the discrete uniform distribution, every simple event is
equally likely to occur.

Setting: Suppose we have a finite sample space S with n simple events.
The discrete uniform distribution assigns each such event a probability
of 1

n

Why? Suppose our sample space S consists of n (disjoint) simple
events A1, · · · , An, each of probability p, then by our axioms, we have:
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P (S) =1

P (A1 ∪ · · ·An) =1

P (A1) + · · ·+ P (An) =1

p+ p+ · · ·+ p︸ ︷︷ ︸
n times

=1

np =1

p =
1

n
In general, if A is not simple, then you have

P (A) =
number of simple events in A

number of simple events in S

Example: Suppose you’re rolling 2 dice. What is the probability that
the sum of the two dice is 7 ?

This sample space has 36 simple events, so each simple event has a
probability of 1

36

There are 6 simple events that give us a sum of 7:

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

Thus the probability of a sum of 7 is 6
36 =

1
6

Example: What is the probability that the sum is < 11?

Let A be the event “The sum is < 11”

In this case it’s easier to calculate P (Ac) which is the probability that
the sum is ≥ 11 and then use P (Ac) = 1− P (A)
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Ac is composed of 3 simple events: (5, 6), (6, 5), (6, 6)

Thus P (Ac) = 3
36 =

1
12

Thus we have P (A) = 1− P (Ac) = 1− 1
12 =

11
12

In the previous example, it is relatively straightforward to draw the
sample space, so we can essentially compute any probability we want
simply by listing out all the elements

For more complicated problems, this is not as easy.

Example: A communication system consists of n = 4 antennas ar-
ranged in a line. Exactly m = 2 out of the n antennas are defective.
The system is functional if no two consecutive antennas are defective.
Assuming that each linear arrangement of the antennas is equally likely,
what is the probability that the system will be functional?

For small values of n and m, we can write out all of the possible con-
figurations. Representing a functional antenna by 1 and a defective
antenna by 0, there are exactly six linear arrangements:

(1) 0011

(2) 0101 (functional)

(3) 0110 (functional)

(4) 1001

(5) 1010 (functional)

(6) 1100
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In this case, the probability that the system is functional is 3
6 =

1
2

For general n and m, it is not immediately obvious how to perform
the requisite counting of configurations. Taking a cue from the Count
on Sesame Street, we need to learn more about counting. The mathe-
matical theory of counting is known as combinatorics.
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