## LECTURE: DISCRETE RANDOM VARIABLES

It is not unusual to assign a value to a certain event, like the amount you win when you play the lottery, or the number of heads when you toss 10 coins. This is called a **random variable** 

# 1. RANDOM VARIABLES

## **Definition:**

A random variable is a real-valued function on a sample space.

It's generally a quantity we wish to measure.

#### **Definition:**

A discrete random variable Y is a random variable which can only take on a finite or countable set of distinct values.

**Note:** For countable set, think for example taking values in  $\{0, 1, 2, 3, \dots\}$ 

In this section, we will mainly focus on discrete random variables.

Here are some examples of random variables:

- (1) The number of people in Providence who prefer chocolate to vanilla ice cream
- (2) The number of defective light bulbs out of a shipment of 1000 light bulbs.

(3) The number of times you play a slot machine in Las Vegas until you win.

## Example 1:

Let S be the sample space representing the flip of two fair coins.

Let Y = the number of heads flipped.

Then Y is a discrete random variable, since it can only have the values 0, 1, or 2.



Notation: Uppercase letters (such as Y) are used to designate random variables whereas lowercase letters (such as y) represent values that a random variable can take.

The expression (Y = y) is shorthand for the set of all points for which the random variable Y takes on the value y. **Example:** In the two-coin-toss problem, the possible values of Y are 0, 1, and 2, so we have:

$$(Y = 0) = \{(T, T)\}$$
$$(Y = 1) = \{(H, T), (T, H)\}$$
$$(Y = 2) = \{(H, H)\}$$

**Upshot:** Since (Y = y) is an event in our sample space, we can talk about its probability, i.e. P(Y = y). In fact, the point of random variables is to do just this!

**Definition:** 

P(Y = y) is the probability that Y takes the value y

**Example:** Back to our two-coin-toss problem, let's look at the probabilities of the random variable Y. Each simple event in our sample space has probability 1/4.



Output of random variable Y

|   | Н   | Т   |
|---|-----|-----|
| Н | 1/4 | 1/4 |
| Т | 1/4 | 1/4 |

|   | Н | T |
|---|---|---|
| Н | 2 | 1 |
| Т | 1 | 0 |

$$P(Y = 0) = 1/4$$
  

$$P(Y = 1) = 1/4 + 1/4 = 1/2$$
  

$$P(Y = 2) = 1/4$$

| Definition:                                                |
|------------------------------------------------------------|
| The probability mass function (pmf) is $p(y) = P(Y = y)$ , |
| that is the probability that Y takes the value $y$         |

The pmf can be represented as a function, table, or graph which gives the values p(y) = P(Y = y) for all possible values y which Y can take.

**Example:** In the two-coin-flip example, we can represent the pmf of Y in a table:

| y | p(y) |
|---|------|
| 0 | 1/4  |
| 1 | 1/2  |
| 2 | 1/4  |

We can also represent the pmf graphically as a histogram



**Important Observation:** The random variable Y induces/creates a probability distribution on the sample space of outputs  $T = \{0, 1, 2\}$ .

More precisely, the probabilities of the sample points in T are the probabilities p(y) for y = 0, 1, 2. We can illustrate this new sample space in a picture.

# Probabilities of points in sample space *T* induced by random variable *Y*

| 1/4 | 1/2 | 1/4 |
|-----|-----|-----|
| 0   | 1   | 2   |

#### **Definition:**

T is called the sample space induced by a random variable

More often or not, we care much more about the sample space T than the original sample space Y. Think for example in gambling, where you care more about the money you'll win/lose than the actual outcome of your game

Since a discrete random variable induces a probability distribution, the following must be true.

## Theorem:

For any discrete random variable Y:

$$0 \le p(y) \le 1$$
 for all  $y$   
 $\sum_{y} p(y) = 1$ 

## Example 2:

Let S be the sample space representing the rolls of two six-sided dice. Consider the following two random variables:

(1) X = the sum of the two dice

(2) Y = the larger of the two die rolls

|   | 1 | 2 | 3 | 4  | 5  | 6  |
|---|---|---|---|----|----|----|
| 1 | 2 | 3 | 4 | 5  | 6  | 7  |
| 2 | 3 | 4 | 5 | 6  | 7  | 8  |
| 3 | 4 | 5 | 6 | 7  | 8  | 9  |
| 4 | 5 | 6 | 7 | 8  | 9  | 10 |
| 5 | 6 | 7 | 8 | 9  | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| X |   |   |   |    |    |    |

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 2 | 3 | 4 | 5 | 6 |
| 3 | 3 | 3 | 3 | 4 | 5 | 6 |
| 4 | 4 | 4 | 4 | 4 | 5 | 6 |
| 5 | 5 | 5 | 5 | 5 | 5 | 6 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| Y |   |   |   |   |   |   |

#### Two random variables on the sample space of two die rolls

The random variable X induces a probability distribution on the set of integers  $\{2, 3, 4, \ldots, 12\}$ , and the random variable Y induces a probability distribution on the set of integers  $\{1, 2, 3, 4, 5, 6\}$ .

Let's look at the pmfs of both random variables using histograms.





Both of these distributions are nonuniform, even though the underlying distribution of the two dice is uniform. .

We can also write the pmfs in table form. For the random variable Y, we have:

| y | p(y)  |
|---|-------|
| 1 | 1/36  |
| 2 | 3/36  |
| 3 | 5/36  |
| 4 | 7/36  |
| 5 | 9/36  |
| 6 | 11/36 |

The pmf for X can be expressed similarly.

# 2. EXPECTED VALUE

Given a discrete random variable, we can definite its mean, or expected value.

#### **Definition:**

The **expected value/mean** of a discrete random variable Y is

$$E(Y) = \sum_{y} yP(Y=y)$$

Where the sum is taken over all possible values y can take.

We can think of the expected value as a weighted average of the values of Y with each possible output y weighted by its probability p(y).

**Other Interpretation:** Think of a random variable Y as an observation from an experiment. Suppose we perform the experiment n times, and observe n values of Y, which we shall designate  $y_1, y_2, \ldots, y_n$ . Then for large n,

$$\frac{y_1 + y_2 + \dots + y_n}{n} \approx E(Y)$$

where the approximation "gets better" as n gets larger, i.e. as we perform more experiments.

The quantity on the left hand side is known as the *empirical mean* or *sample mean* and looks like what we likely learned in high school. The expected value is, in a sense, the limit of the empirical mean as the sample size approaches infinity. We will make this more precise later in the course, but this is a good concept to keep in mind.

# Example 3:

Roll a 6-sided die, so  $S = \{1, 2, 3, 4, 5, 6\}$ 

And let X be simply the number that you get, so if you roll a 5, then X = 5

Then the expected value of X is:

$$E(X) = \sum_{x=1}^{6} xP(X=x) = \sum_{x=1}^{6} x\left(\frac{1}{6}\right) = \frac{1}{6}\sum_{x=1}^{6} x = \frac{21}{6} = 3.5$$

Where used that P(X = x) = 1/6 for all x

Note that the expected value of 3.5 is not a possible value of X, i.e. we cannot roll a 3.5 on a single die. Given our "long term average" interpretation, this is saying that we expect the empirical average to approach 3.5 as the number of rolls increases, not that a 3.5 is the most likely die roll.

## Example 4:

Let Y be the random variable above representing the maximum of two dice. What is the expected value of Y?

To find the expected value, we do a weighted average using the probabilities in the table above.

$$E(Y) = \sum_{y=1}^{6} yP(Y = y)$$
  
=  $1\left(\frac{1}{36}\right) + 2\left(\frac{3}{36}\right) + 3\left(\frac{5}{36}\right) + 4\left(\frac{7}{36}\right) + 5\left(\frac{9}{36}\right) + 6\left(\frac{11}{36}\right)$   
=  $\frac{1+6+15+28+45+66}{36}$   
=  $\frac{161}{36} \approx 4.47$ 

## 3. PROPERTIES OF EXPECTATION

## Linearity of Expectation:

Let X and Y be two random variables and let a and b be constants. Then

$$E(aX + bY) = aE(X) + bE(Y)$$

## **Corollary:**

If  $X_1, X_2, \ldots, X_n$  are random variables, then

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

Linearity of expectation is a really nice property since it does not require the random variables to be independent.