LECTURE: DISCRETE RANDOM VARIABLES

It is not unusual to assign a value to a certain event, like the amount you win when you play the lottery, or the number of heads when you toss 10 coins. This is called a random variable

1. Random Variables

Definition:

A random variable is a real-valued function on a sample space.
It's generally a quantity we wish to measure.

Definition:

A discrete random variable Y is a random variable which can only take on a finite or countable set of distinct values.

Note: For countable set, think for example taking values in $\{0,1,2,3, \cdots\}$
In this section, we will mainly focus on discrete random variables.
Here are some examples of random variables:
(1) The number of people in Providence who prefer chocolate to vanilla ice cream
(2) The number of defective light bulbs out of a shipment of 1000 light bulbs.
(3) The number of times you play a slot machine in Las Vegas until you win.

Example 1:

Let S be the sample space representing the flip of two fair coins.
Let $Y=$ the number of heads flipped.
Then Y is a discrete random variable, since it can only have the values 0,1 , or 2 .

Notation: Uppercase letters (such as Y) are used to designate random variables whereas lowercase letters (such as y) represent values that a random variable can take.

The expression $(Y=y)$ is shorthand for the set of all points for which the random variable Y takes on the value y.

Example: In the two-coin-toss problem, the possible values of Y are 0,1 , and 2 , so we have:

$$
\begin{aligned}
& (Y=0)=\{(T, T)\} \\
& (Y=1)=\{(H, T),(T, H)\} \\
& (Y=2)=\{(H, H)\}
\end{aligned}
$$

Upshot: Since $(Y=y)$ is an event in our sample space, we can talk about its probability, i.e. $P(Y=y)$. In fact, the point of random variables is to do just this!

Definition:
 $P(Y=y)$ is the probability that Y takes the value y

Example: Back to our two-coin-toss problem, let's look at the probabilities of the random variable Y. Each simple event in our sample space has probability $1 / 4$.

Probabilities of simple events in sample space S

Output of random variable Y

$$
\begin{aligned}
& P(Y=0)=1 / 4 \\
& P(Y=1)=1 / 4+1 / 4=1 / 2 \\
& P(Y=2)=1 / 4
\end{aligned}
$$

Definition:

The probability mass function (pmf) is $p(y)=P(Y=y)$, that is the probability that Y takes the value y

The pmf can be represented as a function, table, or graph which gives the values $p(y)=P(Y=y)$ for all possible values y which Y can take.

Example: In the two-coin-flip example, we can represent the pmf of Y in a table:

y	$p(y)$
0	$1 / 4$
1	$1 / 2$
2	$1 / 4$

We can also represent the pmf graphically as a histogram

Important Observation: The random variable Y induces/creates a probability distribution on the sample space of outputs $T=\{0,1,2\}$.

More precisely, the probabilities of the sample points in T are the probabilities $p(y)$ for $y=0,1,2$. We can illustrate this new sample space in a picture.

Probabilities of points in sample space T induced by random variable Y

Definition:

T is called the sample space induced by a random variable

More often or not, we care much more about the sample space T than the original sample space Y. Think for example in gambling, where you care more about the money you'll win/lose than the actual outcome of your game

Since a discrete random variable induces a probability distribution, the following must be true.

Theorem:

For any discrete random variable Y :

$$
\begin{aligned}
& 0 \leq p(y) \leq 1 \text { for all } y \\
& \sum_{y} p(y)=1
\end{aligned}
$$

Example 2:

Let S be the sample space representing the rolls of two six-sided dice. Consider the following two random variables:
(1) $X=$ the sum of the two dice
(2) $Y=$ the larger of the two die rolls

Two random variables on the sample space of two die rolls

	1	2	3	4	5	6
	2 3 4 5	6	7			
3	4	5	6	7	8	
4	4	5	6	7	8	9
5	6	7	8	9	10	
	6	7	8	9	10	11
6	7	8	9	10	11	12

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	2	3	4	5	6
3	3	3	3	4	5	6
4	4	4	4	4	5	6
5	5	5	5	5	5	6
6	6	6	6	6	6	6

The random variable X induces a probability distribution on the set of integers $\{2,3,4, \ldots, 12\}$, and the random variable Y induces a probability distribution on the set of integers $\{1,2,3,4,5,6\}$.

Let's look at the pmfs of both random variables using histograms.

Both of these distributions are nonuniform, even though the underlying distribution of the two dice is uniform. .

We can also write the pmfs in table form. For the random variable Y, we have:

y	$p(y)$
1	$1 / 36$
2	$3 / 36$
3	$5 / 36$
4	$7 / 36$
5	$9 / 36$
6	$11 / 36$

The pmf for X can be expressed similarly.

2. Expected Value

Given a discrete random variable, we can definite its mean, or expected value.

Definition:

The expected value/mean of a discrete random variable Y is

$$
E(Y)=\sum_{y} y P(Y=y)
$$

Where the sum is taken over all possible values y can take.
We can think of the expected value as a weighted average of the values of Y with each possible output y weighted by its probability $p(y)$.

Other Interpretation: Think of a random variable Y as an observation from an experiment. Suppose we perform the experiment n times, and observe n values of Y, which we shall designate $y_{1}, y_{2}, \ldots, y_{n}$. Then for large n,

$$
\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} \approx E(Y)
$$

where the approximation "gets better" as n gets larger, i.e. as we perform more experiments.

The quantity on the left hand side is known as the empirical mean or sample mean and looks like what we likely learned in high school. The expected value is, in a sense, the limit of the empirical mean as the sample size approaches infinity. We will make this more precise later in the course, but this is a good concept to keep in mind.

Example 3:

Roll a 6 -sided die, so $S=\{1,2,3,4,5,6\}$
And let X be simply the number that you get, so if you roll a 5 , then $X=5$

Then the expected value of X is:

$$
E(X)=\sum_{x=1}^{6} x P(X=x)=\sum_{x=1}^{6} x\left(\frac{1}{6}\right)=\frac{1}{6} \sum_{x=1}^{6} x=\frac{21}{6}=3.5
$$

Where used that $P(X=x)=1 / 6$ for all x
Note that the expected value of 3.5 is not a possible value of X, i.e. we cannot roll a 3.5 on a single die. Given our "long term average" interpretation, this is saying that we expect the empirical average to approach 3.5 as the number of rolls increases, not that a 3.5 is the most likely die roll.

Example 4:

Let Y be the random variable above representing the maximum of two dice. What is the expected value of Y ?

To find the expected value, we do a weighted average using the probabilities in the table above.

$$
\begin{aligned}
E(Y) & =\sum_{y=1}^{6} y P(Y=y) \\
& =1\left(\frac{1}{36}\right)+2\left(\frac{3}{36}\right)+3\left(\frac{5}{36}\right)+4\left(\frac{7}{36}\right)+5\left(\frac{9}{36}\right)+6\left(\frac{11}{36}\right) \\
& =\frac{1+6+15+28+45+66}{36} \\
& =\frac{161}{36} \approx 4.47
\end{aligned}
$$

3. Properties of Expectation

Linearity of Expectation:

Let X and Y be two random variables and let a and b be constants. Then

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

Corollary:

If $X_{1}, X_{2}, \ldots, X_{n}$ are random variables, then

$$
E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)
$$

Linearity of expectation is a really nice property since it does not require the random variables to be independent.

