HOMEWORK 10 - SOLUTIONS

Problem 1:

Define

$$
g_{n}(x)= \begin{cases}2 n+4 n^{4} x & \text { if } x \in\left[-\frac{1}{2 n^{3}}, 0\right] \\ 2 n-4 n^{4} x & \text { if } x \in\left(0, \frac{1}{2 n^{3}}\right] \\ 0 & \text { otherwise. }\end{cases}
$$

Note the graph of g_{n} looks like a spike on $\left[-\frac{1}{2 n^{3}}, \frac{1}{2 n^{3}}\right]$ which reaches its maximum height $2 n$ at 0 . As n increases, the spike gets thinner and taller.

Now let

$$
f(x)= \begin{cases}g_{n}\left(-\frac{1}{2 n^{3}}+x-n\right) & \text { if } x \in\left[n, \frac{1}{n^{3}}\right], n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Intuitively, we are putting smaller and thinner spikes at each n for all natural numbers n. Note f is continuous because each g_{n} is continuous and $g_{n}\left(\pm \frac{1}{2 n^{3}}\right)=0$, and f is nonnegative because each g_{n} is nonnegative.

The idea is that the spikes in the graph of f grow taller, so that $\limsup _{x \rightarrow \infty} f(x)=\infty$, but their integrals grow smaller fast enough that $\int_{\mathbb{R}} f<\infty$. To show this carefully, note $f\left(n+\frac{1}{2 n^{2}}\right)=g_{n}(0)=2 n \rightarrow \infty$ as $n \rightarrow \infty$, implying lim $\sup _{x \rightarrow \infty} f(x)=\infty$. Finally,

$$
\int_{\mathbb{R}} f=\sum_{n=1}^{\infty} \int_{\mathbb{R}} g_{n}=\sum_{n=1}^{\infty} 2 n \cdot \frac{1}{n^{3}} \cdot \frac{1}{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty .
$$

We conclude f is the desired function.

Problem 2:

Part (a): WLOG assume $f \geq 0$. Here we prove the contrapositive, i.e. we will show that if f is not 0 almost everywhere, the integral of f must be positive. Let $E=\{x \in X: f(x)>0\}$ be the set on which f is nonzero. We then employ the following useful decomposition

$$
E=\bigcup_{n=1}^{\infty} E_{n} \quad E_{n}=\left\{x \in X: f(x)>\frac{1}{n}\right\}
$$

If f is not 0 almost everywhere, then one of the sets E_{n} has positive measure, i.e. $\mu\left(E_{n}\right)=r>0$ for some n. But then we have

$$
f \geq \frac{1}{n} \chi_{E_{n}},
$$

from which it follows that

$$
\int f \geq \int \frac{1}{n} \chi_{E_{n}}=\frac{1}{n} \mu(E) n=\frac{r}{n}>0
$$

Part (b): Again we prove the contrapositive: we will show that if there is a set of positive measure on which $f(x) \neq 0$, then there exists measurable E such that $\int_{E} f(x) d x \neq 0$.

Write

$$
\{x: f(x) \neq 0\}=\{x: f(x)>0\} \cup\{x: f(x)<0\} .
$$

Since $\{x: f(x) \neq 0\}$ has positive masure, one of these sets on the right must as well; WLOG assume $\{x: f(x)>0\}$ has positive measure. Now write

$$
\{x: f(x)>0\}=\bigcup_{k=1}^{\infty}\left\{x: f(x)>\frac{1}{k}\right\}
$$

At least one of the sets on the right must have positive measure, so there is k and some positive measure set E on which $f(x)>1 / k$. Then

$$
\int_{E} f \geq \int_{E} \frac{1}{k}=\frac{1}{k} \mu(E)>0
$$

Problem 3:

STEP 1: We will first show that $\int_{0}^{1} \frac{1}{r^{p}} d r$ converges if and only if $p<1$, and also $\int_{1}^{\infty} \frac{1}{r^{p}} d r$ converges if and only if $p>1$.

For $p>1$:

$$
\int_{0}^{1} \frac{d x}{x^{p}}=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} \frac{d x}{x^{p}}=-\frac{1}{p-1}+\lim _{\epsilon \rightarrow 0} \frac{1}{(p-1) \epsilon^{p-1}}=+\infty
$$

For $p=1$:

$$
\int_{0}^{1} \frac{d x}{x}=\lim _{\epsilon t o 0} \int_{\epsilon}^{1} \frac{d x}{x}=\lim _{\epsilon \rightarrow 0}(-\log \epsilon)=+\infty
$$

For $p<1$:

$$
\int_{0}^{1} \frac{d x}{x^{p}}=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} \frac{d x}{x^{p}}=-\frac{1}{p-1}+\lim _{\epsilon \rightarrow 0} \frac{1}{(p-1) \epsilon^{p-1}}=0 .
$$

The results for the bounds 1 to ∞ are obtained by noting

$$
\int_{1}^{\infty} \frac{d x}{x^{p}}=\int_{0}^{1} \frac{d x}{x^{2-p}}
$$

STEP 2: Using the polar coordinate transform

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|f_{a}(x)\right| d x & =\int_{0}^{\infty}\left(\int_{|x|=r} f(x) d S(x)\right) d r \\
& =\int_{0}^{1}\left(\int_{|x|=r} \frac{1}{r^{a}} d S(x)\right) d r \\
& =\int_{0}^{1}\left(\frac{1}{r^{a}} C(d) r^{d-1}\right) d r \\
& =C(d) \int_{0}^{1} \frac{1}{r^{a-d+1}} d r .
\end{aligned}
$$

By the first step, f_{a} is therefore integrable if and only if $a<d$.
By a similar computation,

$$
\int_{\mathbb{R}^{d}}\left|g_{a}(x)\right| d x=C(d) \int_{1}^{\infty} \frac{1}{r^{a-d+1}} d r
$$

so by the first step g_{a} is integrable if and only if $a>d$.

Problem 4:

We want to show that if we have nonnegative measurable functions a_{k}, then

$$
\int \sum_{k=1}^{\infty} a_{k}(x) d x=\sum_{k=1}^{\infty} \int a_{k}(x) d x .
$$

Let $f_{n}(x)=\sum_{k=1}^{n} a_{k}(x)$, so the f_{n} form a nondecreasing sequence nonnegative functions. Then we can apply the monotone convergence theorem:

$$
\int \sum_{k=1}^{\infty} a_{k}(x) d x=\int \lim _{n \rightarrow \infty} f_{n}(x) d x=\lim _{n \rightarrow \infty} \int f_{n}(x) d x=\sum_{k=1}^{\infty} \int a_{k}(x) d x .
$$

Problem 5:

STEP 1: Suppose $\left\{f_{n}\right\}$ is Cauchy in L^{1}, that is $\left\|f_{n}-f_{m}\right\|$ goes to 0 as $m, n \rightarrow \infty$. The plan is to extract a subsequence of $\left\{f_{n}\right\}$ that converges to some f pointwise and in the norm. This can be achieved if the convergence is fast enough.

STEP 2: Claim \# 1: There is subsequence $\left\{f_{n_{k}}\right\}$ such that

$$
\left\|f_{n_{k+1}}-f_{n_{k}}\right\| \leq 2^{-k}
$$

Proof of Claim: You do this inductively. Suppose you found $f_{n_{k}}$, then by Cauchiness with $\epsilon=2^{-k}$ there is $N=N\left(2^{-k}\right)$ such that if $n \geq N$ then

$$
\left\|f_{n}-f_{n_{k}}\right\| \leq 2^{-k}
$$

Then just let $n_{k+1}=N \checkmark$

STEP 3: Our function f

Define: $f(x)=f_{n_{1}}(x)+\sum_{k=1}^{\infty} f_{n_{k+1}}(x)-f_{n_{k}}(x)$

And $g(x)=\left|f_{n_{1}}(x)\right|+\sum_{k=1}^{\infty}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|$

$$
\begin{aligned}
\int g d x & =\int\left|f_{n_{1}}\right|+\int \sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| d x \\
& =\int\left|f_{n_{1}}\right|+\sum_{k=1}^{\infty} \int\left|f_{n_{k+1}}-f_{n_{k}}\right| d x \\
& \leq \int\left|f_{n_{1}}\right|+\sum_{k=1}^{\infty} 2^{-k} \\
& =\int\left|f_{n_{1}}\right|+1<\infty
\end{aligned}
$$

(The interchange of series and integrals is justified by the problem about series)

Hence g is integrable, and since $|f| \leq g$, this implies f is integrable.
In particular, the series defining f converges almost everywhere, and since the partial sums of that series are precisely $f_{n_{k}}$ (telescoping series), we find that $f_{n_{k}} \rightarrow f$ a.e. x

STEP 4: Claim \# 2: $f_{n_{k}} \rightarrow f$ in L^{1}
This follows because each partial sum is dominated by g. Therefore, by the Dominated Convergence Theorem, we get $\left\|f_{n_{k}}-f\right\| \rightarrow 0$

STEP 5: Claim \# 3: $f_{n} \rightarrow f$ in L^{1}

Just need to use Cauchiness: Given $\epsilon>0$ there is N such that for all $m, n>N$ then $\left\|f_{n}-f_{m}\right\|<\frac{\epsilon}{2}$. If n_{k} (for k large enough) is chosen such that $n_{k}>N$ and $\left\|f_{n_{k}}-f\right\|<\frac{\epsilon}{2}($ from STEP 4) then if $n>N$ we have

$$
\left\|f_{n}-f\right\| \leq\left\|f_{n}-f_{n_{k}}\right\|+\left\|f_{n_{k}}-f\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Hence f_{n} converges to f in L^{1}

Problem 6:

Let $\epsilon>0$ be given, then since $m(E)<\infty$, by Egorov, there is $A_{\epsilon} \subseteq E$ with $f_{n} \rightarrow f$ uniformly on A_{ϵ} and $m\left(E-A_{\epsilon}\right)<\epsilon$.

By uniform conv, there is N such that if $n>N$ then $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in A_{\epsilon}$, but then

$$
\begin{aligned}
\int_{E}\left|f-f_{n}\right| d x & =\left(\int_{A_{\epsilon}}+\int_{E-A_{\epsilon}}\right)\left|f_{n}-f\right| \\
& =\int_{A_{\epsilon}}^{\left|f_{n}(x)-f(x)\right|} d x+\int_{E \epsilon} \underbrace{\left|f_{n}(x)-f(x)\right|}_{\leq-A_{\epsilon}} d x \\
& \leq m\left(A_{\epsilon}\right) \epsilon+2 M m\left(E-A_{\epsilon}\right) \\
& \leq m(E) \epsilon+2 M \epsilon=\epsilon(m(E)+2 M) \quad \square
\end{aligned}
$$

Problem 7:

Part (a):

$$
\begin{aligned}
\int f & =\int_{\{x \mid f(x)>t\}} f+\int_{\{x \mid f(x) \leq t\}} f \\
& \geq \int_{\{x \mid f(x)>t\}} f \\
& \geq \int_{\{x \mid f(x)>t\}} t \\
& =\operatorname{tm}\{x \mid f(x)>t\}
\end{aligned}
$$

Hence $\operatorname{tm}\{x \mid f(x)>t\} \leq \int f$

Part (b):

$$
\begin{aligned}
\int|f|^{p} & =\int_{\{x| | f(x) \mid>t\}}|f|^{p}+\int_{\{x| | f(x) \mid \leq t\}}|f|^{p} \\
& \geq \int_{\{x| | f(x) \mid>t\}}|f|^{p} \\
& \geq \int_{\{x| | f(x) \mid>t\}} t^{p} \\
& =t^{p} m\{x| | f(x) \mid>t\} \\
& t^{p} m\{x| | f(x) \mid>t\} \leq \int|f|^{p}
\end{aligned}
$$

And dividing by $t^{p}>0$ gives us the result

Problem 8:

$$
\int_{X}|T(f)|^{p} d \mu=\int_{X}|f|^{p}|g|^{p} d \mu \leq \int_{X}|f|^{p}\|g\|_{L^{\infty}}^{p} d \mu=\|g\|_{L^{\infty}}^{p} \int_{X}|f|^{p} d \mu
$$

In particular, taking $p-$ th root of both sides we get

$$
\|T(f)\|_{L^{p}(X)} \leq\|g\|_{L^{\infty}(X)}\|f\|_{L^{p}(X)}
$$

In particular $T: L^{p} \rightarrow L^{p}$ is bounded and $\|T\| \leq\|g\|_{L^{\infty}(X)}$

Problem 9:

WLOG assume $f \geq 0$ and let $\epsilon>0$ be given.
Let $f_{n}=: f \chi_{E_{n}}$ where $E_{n}=\{x \mid f(x) \leq n\}$ and notice $f_{n} \leq n$

Then $f_{n} \geq 0$ measurable and $f_{n} \nearrow f$, so by the Monotone Convergence Theorem we have $\lim _{n \rightarrow \infty} \int f-f_{n}=0$, so there is $N>0$ such that

$$
\int f-f_{N}<\frac{\epsilon}{2}
$$

Let $\delta \mathrm{TBA}$, then if $m(E)<\delta$, then

$$
\begin{aligned}
\int_{E} f & =\int_{E} \underbrace{f-f_{N}}_{\geq 0}+\int_{E} f_{N} \\
& \leq \int_{\mathbb{R}^{d}} f-f_{N}+\int_{E} \underbrace{f_{N}}_{\leq N} \\
& \leq \frac{\epsilon}{2}+N m(E) \\
& <\frac{\epsilon}{2}+N \delta
\end{aligned}
$$

If you choose δ such that $N \delta<\frac{\epsilon}{2}$ then you get $\int_{E} f<\epsilon$

Problem 10:

Define $f=0$ and

$$
\begin{gathered}
f_{1}=\chi_{[0,1]} \\
f_{2}=\chi_{\left[0, \frac{1}{2}\right]} f_{3}=\chi_{\left[\frac{1}{2}, 1\right]} \\
f_{4}=\chi_{\left[0, \frac{1}{4}\right]}, f_{5}=\chi_{\left[\frac{1}{4}, \frac{1}{2}\right]}, f_{6}=\chi_{\left[\frac{1}{2}, \frac{3}{4}\right]}, f_{7}=\chi_{\left[\frac{3}{4}, 1\right]}
\end{gathered}
$$

Then $f_{n}(x) \nrightarrow 0$ for no x (Given x we have $f_{n}(x)=1$ for infinitely many n), but

$$
\left\|f_{n}-f\right\|=\int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=\int_{0}^{1}\left|f_{n}\right| \rightarrow 0
$$

Since the areas under f_{n} shrink to 0 .

