HOMEWORK 10 - SOLUTIONS

Problem 1:

Define

$$g_n(x) = \begin{cases} 2n + 4n^4 x & \text{if } x \in \left[-\frac{1}{2n^3}, 0\right] \\ 2n - 4n^4 x & \text{if } x \in \left(0, \frac{1}{2n^3}\right] \\ 0 & \text{otherwise.} \end{cases}$$

Note the graph of g_n looks like a spike on $\left[-\frac{1}{2n^3}, \frac{1}{2n^3}\right]$ which reaches its maximum height 2n at 0. As n increases, the spike gets thinner and taller.

Now let

$$f(x) = \begin{cases} g_n \left(-\frac{1}{2n^3} + x - n \right) & \text{if } x \in [n, \frac{1}{n^3}], n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Intuitively, we are putting smaller and thinner spikes at each n for all natural numbers n. Note f is continuous because each g_n is continuous and $g_n(\pm \frac{1}{2n^3}) = 0$, and f is nonnegative because each g_n is nonnegative.

The idea is that the spikes in the graph of f grow taller, so that $\limsup_{x\to\infty} f(x) = \infty$, but their integrals grow smaller fast enough that $\int_{\mathbb{R}} f < \infty$. To show this carefully, note $f(n + \frac{1}{2n^2}) = g_n(0) = 2n \to \infty$ as $n \to \infty$, implying $\limsup_{x\to\infty} f(x) = \infty$. Finally,

$$\int_{\mathbb{R}} f = \sum_{n=1}^{\infty} \int_{\mathbb{R}} g_n = \sum_{n=1}^{\infty} 2n \cdot \frac{1}{n^3} \cdot \frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

We conclude f is the desired function.

Problem 2:

Part (a): WLOG assume $f \ge 0$. Here we prove the contrapositive, i.e. we will show that if f is not 0 almost everywhere, the integral of f must be positive. Let $E = \{x \in X : f(x) > 0\}$ be the set on which f is nonzero. We then employ the following useful decomposition

$$E = \bigcup_{n=1}^{\infty} E_n \qquad \qquad E_n = \left\{ x \in X : f(x) > \frac{1}{n} \right\}.$$

If f is not 0 almost everywhere, then one of the sets E_n has positive measure, i.e. $\mu(E_n) = r > 0$ for some n. But then we have

$$f \ge \frac{1}{n} \chi_{E_n},$$

from which it follows that

$$\int f \ge \int \frac{1}{n} \chi_{E_n} = \frac{1}{n} \mu(E)n = \frac{r}{n} > 0.$$

Part (b): Again we prove the contrapositive: we will show that if there is a set of positive measure on which $f(x) \neq 0$, then there exists measurable E such that $\int_E f(x) dx \neq 0$.

Write

$$\{x: f(x) \neq 0\} = \{x: f(x) > 0\} \cup \{x: f(x) < 0\}.$$

Since $\{x : f(x) \neq 0\}$ has positive masure, one of these sets on the right must as well; WLOG assume $\{x : f(x) > 0\}$ has positive measure. Now write

$$\{x: f(x) > 0\} = \bigcup_{k=1}^{\infty} \left\{ x: f(x) > \frac{1}{k} \right\}$$

 $\mathbf{2}$

At least one of the sets on the right must have positive measure, so there is k and some positive measure set E on which f(x) > 1/k. Then

$$\int_E f \ge \int_E \frac{1}{k} = \frac{1}{k}\mu(E) > 0.$$

Problem 3:

STEP 1: We will first show that $\int_0^1 \frac{1}{r^p} dr$ converges if and only if p < 1, and also $\int_1^\infty \frac{1}{r^p} dr$ converges if and only if p > 1.

For p > 1:

$$\int_0^1 \frac{dx}{x^p} = \lim_{\epsilon \to 0} \int_{\epsilon}^1 \frac{dx}{x^p} = -\frac{1}{p-1} + \lim_{\epsilon \to 0} \frac{1}{(p-1)\epsilon^{p-1}} = +\infty$$

For p = 1:

$$\int_0^1 \frac{dx}{x} = \lim_{\epsilon \to 0} \int_{\epsilon}^1 \frac{dx}{x} = \lim_{\epsilon \to 0} (-\log \epsilon) = +\infty.$$

For p < 1:

$$\int_0^1 \frac{dx}{x^p} = \lim_{\epsilon \to 0} \int_{\epsilon}^1 \frac{dx}{x^p} = -\frac{1}{p-1} + \lim_{\epsilon \to 0} \frac{1}{(p-1)\epsilon^{p-1}} = 0.$$

The results for the bounds 1 to ∞ are obtained by noting

$$\int_1^\infty \frac{dx}{x^p} = \int_0^1 \frac{dx}{x^{2-p}}.$$

STEP 2: Using the polar coordinate transform

$$\int_{\mathbb{R}^d} |f_a(x)| dx = \int_0^\infty \left(\int_{|x|=r} f(x) dS(x) \right) dr$$
$$= \int_0^1 \left(\int_{|x|=r} \frac{1}{r^a} dS(x) \right) dr$$
$$= \int_0^1 \left(\frac{1}{r^a} C(d) r^{d-1} \right) dr$$
$$= C(d) \int_0^1 \frac{1}{r^{a-d+1}} dr.$$

By the first step, f_a is therefore integrable if and only if a < d.

By a similar computation,

$$\int_{\mathbb{R}^d} |g_a(x)| dx = C(d) \int_1^\infty \frac{1}{r^{a-d+1}} dr,$$

so by the first step g_a is integrable if and only if a > d.

Problem 4:

We want to show that if we have nonnegative measurable functions a_k , then

$$\int \sum_{k=1}^{\infty} a_k(x) dx = \sum_{k=1}^{\infty} \int a_k(x) dx.$$

Let $f_n(x) = \sum_{k=1}^n a_k(x)$, so the f_n form a nondecreasing sequence nonnegative functions. Then we can apply the monotone convergence theorem:

$$\int \sum_{k=1}^{\infty} a_k(x) dx = \int \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int f_n(x) dx = \sum_{k=1}^{\infty} \int a_k(x) dx.$$

Problem 5:

STEP 1: Suppose $\{f_n\}$ is Cauchy in L^1 , that is $||f_n - f_m||$ goes to 0 as $m, n \to \infty$. The plan is to extract a subsequence of $\{f_n\}$ that converges to some f pointwise *and* in the norm. This can be achieved if the convergence is fast enough.

STEP 2: Claim # 1: There is subsequence $\{f_{n_k}\}$ such that

$$\left\| f_{n_{k+1}} - f_{n_k} \right\| \le 2^{-k}$$

Proof of Claim: You do this inductively. Suppose you found f_{n_k} , then by Cauchiness with $\epsilon = 2^{-k}$ there is $N = N(2^{-k})$ such that if $n \ge N$ then

$$||f_n - f_{n_k}|| \le 2^{-k}$$

Then just let $n_{k+1} = N \checkmark$

STEP 3: Our function f

Define:
$$f(x) = f_{n_1}(x) + \sum_{k=1}^{\infty} f_{n_{k+1}}(x) - f_{n_k}(x)$$

And
$$g(x) = |f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)|$$

$$\int g \, dx = \int |f_{n_1}| + \int \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| \, dx$$
$$= \int |f_{n_1}| + \sum_{k=1}^{\infty} \int |f_{n_{k+1}} - f_{n_k}| \, dx$$
$$\leq \int |f_{n_1}| + \sum_{k=1}^{\infty} 2^{-k}$$
$$= \int |f_{n_1}| + 1 < \infty$$

(The interchange of series and integrals is justified by the problem about series)

Hence g is integrable, and since $|f| \leq g$, this implies f is integrable.

In particular, the series defining f converges almost everywhere, and since the partial sums of that series are precisely f_{n_k} (telescoping series), we find that $f_{n_k} \to f$ a.e. x

STEP 4: Claim # 2: $f_{n_k} \rightarrow f$ in L^1

This follows because each partial sum is dominated by g. Therefore, by the Dominated Convergence Theorem, we get $||f_{n_k} - f|| \to 0$

STEP 5: Claim # 3: $f_n \to f$ in L^1

Just need to use Cauchiness: Given $\epsilon > 0$ there is N such that for all m, n > N then $||f_n - f_m|| < \frac{\epsilon}{2}$. If n_k (for k large enough) is chosen such that $n_k > N$ and $||f_{n_k} - f|| < \frac{\epsilon}{2}$ (from **STEP 4**) then if n > N we have

$$||f_n - f|| \le ||f_n - f_{n_k}|| + ||f_{n_k} - f|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence f_n converges to f in L^1

Problem 6:

Let $\epsilon > 0$ be given, then since $m(E) < \infty$, by Egorov, there is $A_{\epsilon} \subseteq E$ with $f_n \to f$ uniformly on A_{ϵ} and $m(E - A_{\epsilon}) < \epsilon$.

By uniform conv, there is N such that if n > N then $|f_n(x) - f(x)| < \epsilon$ for all $x \in A_{\epsilon}$, but then

$$\int_{E} |f - f_{n}| dx = \left(\int_{A_{\epsilon}} + \int_{E-A_{\epsilon}} \right) |f_{n} - f|$$

$$= \int_{A_{\epsilon}} \underbrace{|f_{n}(x) - f(x)|}_{<\epsilon} dx + \int_{E-A_{\epsilon}} \underbrace{|f_{n}(x) - f(x)|}_{\leq 2M} dx$$

$$\leq m(A_{\epsilon}) \epsilon + 2M m(E - A_{\epsilon})$$

$$\leq m(E)\epsilon + 2M\epsilon = \epsilon (m(E) + 2M) \square$$

Problem 7:

Part (a):

$$\int f = \int_{\{x \mid f(x) > t\}} f + \int_{\{x \mid f(x) \le t\}} f$$

$$\geq \int_{\{x \mid f(x) > t\}} f$$

$$\geq \int_{\{x \mid f(x) > t\}} t$$

$$= tm \{x \mid f(x) > t\}$$
Hence $tm \{x \mid f(x) > t\} \le \int f$

 $\{x \mid f(x) > t\} \ge \int$

Part (b):

$$\int |f|^{p} = \int_{\{x \mid |f(x)| > t\}} |f|^{p} + \int_{\{x \mid |f(x)| \le t\}} |f|^{p}$$

$$\geq \int_{\{x \mid |f(x)| > t\}} |f|^{p}$$

$$\geq \int_{\{x \mid |f(x)| > t\}} t^{p}$$

$$= t^{p} m \{x \mid |f(x)| > t\}$$

$$t^{p} m \{x \mid |f(x)| > t\} \le \int |f|^{p}$$

And dividing by $t^p > 0$ gives us the result

Problem 8:

$$\int_{X} |T(f)|^{p} d\mu = \int_{X} |f|^{p} |g|^{p} d\mu \leq \int_{X} |f|^{p} ||g||_{L^{\infty}}^{p} d\mu = ||g||_{L^{\infty}}^{p} \int_{X} |f|^{p} d\mu$$

In particular, taking p-th root of both sides we get

$$||T(f)||_{L^{p}(X)} \le ||g||_{L^{\infty}(X)} ||f||_{L^{p}(X)}$$

In particular $T: L^p \to L^p$ is bounded and $||T|| \le ||g||_{L^{\infty}(X)}$

Problem 9:

WLOG assume $f \ge 0$ and let $\epsilon > 0$ be given.

Let $f_n =: f \chi_{E_n}$ where $E_n = \{x \mid f(x) \le n\}$ and notice $f_n \le n$

Then $f_n \ge 0$ measurable and $f_n \nearrow f$, so by the Monotone Convergence Theorem we have $\lim_{n\to\infty} \int f - f_n = 0$, so there is N > 0 such that

$$\int f - f_N < \frac{\epsilon}{2}$$

Let δ TBA, then if $m(E) < \delta$, then

$$\begin{split} \int_{E} f &= \int_{E} \underbrace{f - f_{N}}_{\geq 0} + \int_{E} f_{N} \\ &\leq \int_{\mathbb{R}^{d}} f - f_{N} + \int_{E} \underbrace{f_{N}}_{\leq N} \\ &\leq \underbrace{\frac{\epsilon}{2}}_{} + Nm(E) \\ &< \underbrace{\frac{\epsilon}{2}}_{} + N\delta \end{split}$$

If you choose δ such that $N\delta < \frac{\epsilon}{2}$ then you get $\int_E f < \epsilon$

Problem 10:

Define f = 0 and

$$f_{1} = \chi_{[0,1]}$$

$$f_{2} = \chi_{\left[0,\frac{1}{2}\right]} f_{3} = \chi_{\left[\frac{1}{2},1\right]}$$

$$f_{4} = \chi_{\left[0,\frac{1}{4}\right]}, f_{5} = \chi_{\left[\frac{1}{4},\frac{1}{2}\right]}, f_{6} = \chi_{\left[\frac{1}{2},\frac{3}{4}\right]}, f_{7} = \chi_{\left[\frac{3}{4},1\right]}$$

Then $f_n(x) \not\rightarrow 0$ for no x (Given x we have $f_n(x) = 1$ for infinitely many n), but

$$||f_n - f|| = \int_0^1 |f_n(x) - f(x)| \, dx = \int_0^1 |f_n| \to 0$$

Since the areas under f_n shrink to 0.