
HOMEWORK 10 − SOLUTIONS

Problem 1:

Define

gn(x) =


2n+ 4n4x if x ∈

[
− 1

2n3 , 0
]

2n− 4n4x if x ∈
(
0, 1

2n3

]
0 otherwise.

Note the graph of gn looks like a spike on [− 1
2n3 ,

1
2n3 ] which reaches its

maximum height 2n at 0. As n increases, the spike gets thinner and
taller.

Now let

f(x) =

{
gn

(
− 1

2n3 + x− n
)

if x ∈ [n, 1
n3 ], n ∈ N

0 otherwise.

Intuitively, we are putting smaller and thinner spikes at each n for all
natural numbers n. Note f is continuous because each gn is continuous
and gn(± 1

2n3 ) = 0, and f is nonnegative because each gn is nonnegative.

The idea is that the spikes in the graph of f grow taller, so that
lim supx→∞ f(x) = ∞, but their integrals grow smaller fast enough that∫
R f < ∞. To show this carefully, note f(n+ 1

2n2 ) = gn(0) = 2n → ∞
as n → ∞, implying lim supx→∞ f(x) = ∞. Finally,∫

R
f =

∞∑
n=1

∫
R
gn =

∞∑
n=1

2n · 1

n3
· 1
2
=

∞∑
n=1

1

n2
< ∞.

1
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We conclude f is the desired function.

Problem 2:

Part (a): WLOG assume f ≥ 0. Here we prove the contrapositive,
i.e. we will show that if f is not 0 almost everywhere, the integral of
f must be positive. Let E = {x ∈ X : f(x) > 0} be the set on which
f is nonzero. We then employ the following useful decomposition

E =
∞⋃
n=1

En En =

{
x ∈ X : f(x) >

1

n

}
.

If f is not 0 almost everywhere, then one of the sets En has positive
measure, i.e. µ(En) = r > 0 for some n. But then we have

f ≥ 1

n
χEn

,

from which it follows that∫
f ≥

∫
1

n
χEn

=
1

n
µ(E)n =

r

n
> 0.

Part (b): Again we prove the contrapositive: we will show that if
there is a set of positive measure on which f(x) ̸= 0, then there exists
measurable E such that

∫
E f(x)dx ̸= 0.

Write
{x : f(x) ̸= 0} = {x : f(x) > 0} ∪ {x : f(x) < 0}.

Since {x : f(x) ̸= 0} has positive masure, one of these sets on the right
must as well; WLOG assume {x : f(x) > 0} has positive measure.
Now write

{x : f(x) > 0} =
∞⋃
k=1

{
x : f(x) >

1

k

}
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At least one of the sets on the right must have positive measure, so
there is k and some positive measure set E on which f(x) > 1/k. Then∫

E

f ≥
∫
E

1

k
=

1

k
µ(E) > 0.

Problem 3:

STEP 1: We will first show that
∫ 1

0
1
rpdr converges if and only if p < 1,

and also
∫∞
1

1
rpdr converges if and only if p > 1.

For p > 1:

∫ 1

0

dx

xp
= lim

ϵ→0

∫ 1

ϵ

dx

xp
= − 1

p− 1
+ lim

ϵ→0

1

(p− 1)ϵp−1
= +∞

For p = 1:

∫ 1

0

dx

x
= lim

ϵto0

∫ 1

ϵ

dx

x
= lim

ϵ→0
(− log ϵ) = +∞.

For p < 1:

∫ 1

0

dx

xp
= lim

ϵ→0

∫ 1

ϵ

dx

xp
= − 1

p− 1
+ lim

ϵ→0

1

(p− 1)ϵp−1
= 0.

The results for the bounds 1 to ∞ are obtained by noting

∫ ∞

1

dx

xp
=

∫ 1

0

dx

x2−p
.
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STEP 2: Using the polar coordinate transform∫
Rd

|fa(x)|dx =

∫ ∞

0

(∫
|x|=r

f(x)dS(x)

)
dr

=

∫ 1

0

(∫
|x|=r

1

ra
dS(x)

)
dr

=

∫ 1

0

(
1

ra
C(d)rd−1

)
dr

= C(d)

∫ 1

0

1

ra−d+1
dr.

By the first step, fa is therefore integrable if and only if a < d.

By a similar computation,∫
Rd

|ga(x)|dx = C(d)

∫ ∞

1

1

ra−d+1
dr,

so by the first step ga is integrable if and only if a > d.

Problem 4:

We want to show that if we have nonnegative measurable functions ak,
then ∫ ∞∑

k=1

ak(x)dx =
∞∑
k=1

∫
ak(x)dx.

Let fn(x) =
∑n

k=1 ak(x), so the fn form a nondecreasing sequence
nonnegative functions. Then we can apply the monotone convergence
theorem:∫ ∞∑

k=1

ak(x)dx =

∫
lim
n→∞

fn(x)dx = lim
n→∞

∫
fn(x)dx =

∞∑
k=1

∫
ak(x)dx.



HOMEWORK 10 − SOLUTIONS 5

Problem 5:

STEP 1: Suppose {fn} is Cauchy in L1, that is ∥fn − fm∥ goes to
0 as m,n → ∞. The plan is to extract a subsequence of {fn} that
converges to some f pointwise and in the norm. This can be achieved
if the convergence is fast enough.

STEP 2: Claim # 1: There is subsequence {fnk
} such that

∥∥fnk+1
− fnk

∥∥ ≤ 2−k

Proof of Claim: You do this inductively. Suppose you found fnk
,

then by Cauchiness with ϵ = 2−k there is N = N(2−k) such that if
n ≥ N then

∥fn − fnk
∥ ≤ 2−k

Then just let nk+1 = N ✓

STEP 3: Our function f

Define: f(x) = fn1
(x) +

∞∑
k=1

fnk+1
(x)− fnk

(x)

And g(x) = |fn1
(x)|+

∞∑
k=1

∣∣fnk+1
(x)− fnk

(x)
∣∣
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∫
g dx =

∫
|fn1

|+
∫ ∞∑

k=1

∣∣fnk+1
− fnk

∣∣ dx
=

∫
|fn1

|+
∞∑
k=1

∫ ∣∣fnk+1
− fnk

∣∣ dx
≤
∫

|fn1
|+

∞∑
k=1

2−k

=

∫
|fn1

|+ 1 < ∞

(The interchange of series and integrals is justified by the problem
about series)

Hence g is integrable, and since |f | ≤ g, this implies f is integrable.

In particular, the series defining f converges almost everywhere, and
since the partial sums of that series are precisely fnk

(telescoping se-
ries), we find that fnk

→ f a.e. x

STEP 4: Claim # 2: fnk
→ f in L1

This follows because each partial sum is dominated by g. Therefore,
by the Dominated Convergence Theorem, we get ∥fnk

− f∥ → 0

STEP 5: Claim # 3: fn → f in L1

Just need to use Cauchiness: Given ϵ > 0 there is N such that for all
m,n > N then ∥fn − fm∥ < ϵ

2 . If nk (for k large enough) is chosen
such that nk > N and ∥fnk

− f∥ < ϵ
2 (from STEP 4) then if n > N

we have

∥fn − f∥ ≤ ∥fn − fnk
∥+ ∥fnk

− f∥ <
ϵ

2
+

ϵ

2
= ϵ
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Hence fn converges to f in L1 □

Problem 6:

Let ϵ > 0 be given, then since m(E) < ∞, by Egorov, there is Aϵ ⊆ E
with fn → f uniformly on Aϵ and m(E − Aϵ) < ϵ.

By uniform conv, there is N such that if n > N then |fn(x)− f(x)| < ϵ
for all x ∈ Aϵ, but then

∫
E

|f − fn| dx =

(∫
Aϵ

+

∫
E−Aϵ

)
|fn − f |

=

∫
Aϵ

|fn(x)− f(x)|︸ ︷︷ ︸
<ϵ

dx+

∫
E−Aϵ

|fn(x)− f(x)|︸ ︷︷ ︸
≤2M

dx

≤m(Aϵ) ϵ+ 2M m(E − Aϵ)

≤m(E)ϵ+ 2Mϵ = ϵ (m(E) + 2M) □

Problem 7:

Part (a): ∫
f =

∫
{x|f(x)>t}

f +

∫
{x|f(x)≤t}

f

≥
∫
{x|f(x)>t}

f

≥
∫
{x|f(x)>t}

t

=tm {x | f(x) > t}

Hence tm {x | f(x) > t} ≤
∫

f
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Part (b): ∫
|f |p =

∫
{x| |f(x)|>t}

|f |p +
∫
{x| |f(x)|≤t}

|f |p

≥
∫
{x| |f(x)|>t}

|f |p

≥
∫
{x| |f(x)|>t}

tp

=tpm {x | |f(x)| > t}

tpm {x | |f(x)| > t} ≤
∫

|f |p

And dividing by tp > 0 gives us the result

Problem 8:∫
X

|T (f)|p dµ =

∫
X

|f |p |g|p dµ ≤
∫
X

|f |p ∥g∥pL∞ dµ = ∥g∥pL∞

∫
X

|f |p dµ

In particular, taking p−th root of both sides we get

∥T (f)∥Lp(X) ≤ ∥g∥L∞(X) ∥f∥Lp(X)

In particular T : Lp → Lp is bounded and ∥T∥ ≤ ∥g∥L∞(X)

Problem 9:

WLOG assume f ≥ 0 and let ϵ > 0 be given.

Let fn =: f χEn
where En = {x | f(x) ≤ n} and notice fn ≤ n
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Then fn ≥ 0 measurable and fn ↗ f , so by the Monotone Convergence
Theorem we have limn→∞

∫
f − fn = 0, so there is N > 0 such that∫

f − fN <
ϵ

2

Let δ TBA, then if m(E) < δ, then∫
E

f =

∫
E

f − fN︸ ︷︷ ︸
≥0

+

∫
E

fN

≤
∫
Rd

f − fN +

∫
E

fN︸︷︷︸
≤N

≤ ϵ

2
+Nm(E)

<
ϵ

2
+Nδ

If you choose δ such that Nδ < ϵ
2 then you get

∫
E f < ϵ □

Problem 10:

Define f = 0 and

f1 = χ[0,1]

f2 = χ[0, 12 ]
f3 = χ[ 12 ,1]

f4 = χ[0, 14 ]
, f5 = χ[ 14 ,

1
2 ]
, f6 = χ[ 12 ,

3
4 ]
, f7 = χ[ 34 ,1]

Then fn(x) ↛ 0 for no x (Given x we have fn(x) = 1 for infinitely
many n), but

∥fn − f∥ =

∫ 1

0

|fn(x)− f(x)| dx =

∫ 1

0

|fn| → 0

Since the areas under fn shrink to 0.


