
LECTURE: LEBESGUE INTEGRAL

Setting: Suppose you’re given a measure space (X,M, µ)

So X is a set, M is the family of measurable subsets of X and µ is a
measure on M

We will now define the Lebesgue integral of real-valued (measurable)
functions f on X. This is done in four steps:

1. Step 1: Simple Functions
Definition:

If E is any set then the characteristic function of E is

χE(x) =

{
1 x ∈ E

0 x /∈ E

Notice χE(x) is a measurable function if and only if E is measurable

Definition:

A simple function is a function of the form

ϕ(x) =
n∑

k=1

yk χEk
(x)

Where Ek ∈ M and yk are real numbers.
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WLOG, we can assume that the Ek are disjoint and each yk is nonzero
and distinct (otherwise just group sets with common value together)

In that case, the range of ϕ is the finite set {y1, . . . , yn}, and also
Ek = f−1({yk})

Definition:

The Lebesgue integral of ϕ =
∑n

k=1 ykχEk
(x) is∫

X

ϕdµ =
n∑

k=1

ykµ(Ek)

It can be shown that this definition is independent of the representation
used, that is if

ϕ(x) =
n∑

k=1

ykχEk
(x) =

m∑
k=1

zkχFk
(x) then

n∑
k=1

ykµ(Ek) =
m∑
k=1

zkµ(Fk)

We can also define
∫
A ϕ(x)dx where A is any measurable subset of X:

Definition: ∫
A

ϕdµ =

∫
X

ϕ χAdµ =
n∑

k=1

ykµ(Ek ∩ A)

This integral has the following nice properties:
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Facts:

Let ϕ and ψ be simple functions, then

(1) (Linearity)
∫
X(ϕ+ cψ) =

∫
X ϕ+ c

∫
X ψ.

(2) (Monotonicity) If ϕ ≤ ψ, then
∫
X ϕ ≤

∫
X ψ

(3) (Additivity) If E and F are disjoint then∫
E∪F

ϕ =

∫
E

ϕ+

∫
F

ϕ

(4) (Triangle Inequality) |ϕ| is simple and∣∣∣∣∫
X

ϕ

∣∣∣∣ ≤ ∫
X

|ϕ|

(5) Define the real-valued function ρ on M by

ρ(E) =

∫
E

ϕdµ

Then ρ is a (signed) measure on M

The last one may seem a little strange, but is really useful for proving
the Radon-Nikodym Theorem and gives a new measure on M

Note: Compare this definition with the Riemann integral! In the Rie-
mann integral we focused on the x−values of f , which we partitioned
into pieces, but here we’re focusing more on the y−values y1, y2, · · · , yn,
we’re partitioning the range of f
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2. Step 2: Bounded Non-Negative Functions

with Finite Support
Definition:

The support of f is supp(f) = {x | f(x) ̸= 0}

(Sometimes it’s defined as the closure of the above, but the distinction
is not important here)

Definition:

f is supported on E if f(x) = 0 whenever x /∈ E

In this second step, we’re interested in bounded non-negative functions
such that µ (supp(f)) <∞

(Visualize this like functions with compact support, functions that are
0 after a while)

The key to defining
∫
X f(x) here lies in the following

Simple Approximation Lemma:

Let f : (X,M) → [0,∞) be bounded, and of finite support.

Then there is an increasing sequence of nonnegative simple func-
tions {ϕn(x)} i.e. 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f such that ϕn → f
pointwise.

Proof-Idea: The idea is first of all to truncate f if it becomes too
large, and then partition the range of those truncated functions into
fine layers, like the lower sum in Riemann integrals.
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We then define the integral in the following way:

Definition:

If f is non-negative, bounded, and of finite support then∫
X

f(x)dx =: lim
n→∞

∫
X

ϕn(x)dx

Where {ϕn} is any sequence of bounded simple functions with
same support as f such that ϕn → f pointwise

Problem: We don’t know if this limit is independent of the sequence
(ϕn) used, yet alone that it even exists, because ϕn → f pointwise does
not imply that

∫
ϕn →

∫
f . What saves us is:

Egorov’s Theorem:

If µ(E) < ∞ and fn : E → R is a sequence of functions with
fn → f pointwise on E. Then if ϵ > 0 there is a closed subset
Aϵ ⊆ E with µ(E − Aϵ) < ϵ such that fn → f uniformly on Aϵ

Using Egorov’s Theorem you can show that in fact this limit exists
and is independent of the sequence ϕn used

At this point, you can show that if f is Riemann Integrable on [a, b]
then the Riemann and Lebesgue integrals of f are the same

3. Step 3: Non-Negative Functions
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Definition:

If f is ≥ 0 is measurable, then∫
X

f(x)dx =: sup
g

∫
X

g(x)dx

Where the sup is taken over all g from STEP 2 with 0 ≤ g ≤ f

Definition:

f is integrable if

∫
X

|f(x)| dx <∞

(We can actually remove the absolute value since f ≥ 0)

The same properties (linearity, additivity, monotonicity, triangle inte-
quality) hold.

Fact:

If f is integrable and 0 ≤ g ≤ f then g is integrable

Proof: Follows because
∫
|g| ≤

∫
|f | <∞

Definition:

A property holds almost everywhere if it holds everywhere ex-
cept for a set of measure 0

Fact:

If f is integrable then f(x) <∞ for almost every x
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Proof: Let Ek = {x | f(x) ≥ k} and E∞ = {x | f(x) = ∞} then∫
X

f(x)dx ≥
∫
Ek

f(x)dx ≥
∫
Ek

k = kµ(Ek)

Hence µ(Ek) ≤ 1
k

∫
X f(x)dx→ ∞ and hence µ(Ek) → 0

But since Ek ↘ E∞ and µ(Ek) <∞ we get µ(E∞) = 0

4. Step 4: General Case

For general f , just write f = f+ − f− where

f+ = max{f, 0} f− = max{−f, 0}.

Here f± are non-negative functions and so

Definition: ∫
X

f(x)dx =:

∫
X

f+ −
∫
X

f−

Definition:

f is integrable if
∫
X |f(x)| dx <∞

Note:
∫
f is independent of the decomposition used:

If f = f1−f2 = g1−g2 where fi and gi are non-negative and measurable

Then f1 + g2 = g1 + f2 so by STEP 3 we have∫
f1 +

∫
g2 =

∫
g1 +

∫
f2 ⇒

∫
f1 −

∫
f2 =

∫
g1 −

∫
g2
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All the facts discussed before (linearity, additivity, monotonicity, tri-
angle inequality) are true here as well

Fact:

Suppose
∫
X |f | dx = 0 then f = 0 almost everywhere

Finally, integrable functions enjoy the following property, called abso-
lute continuity:

Fact:

If f is integrable then for all ϵ > 0 there is δ > 0 such that

µ(E) < δ ⇒
∫
E

|f(x)| dx < ϵ

5. Lp spaces

The space of integrable functions has a particularly nice structure.

Definition:

L1(X) = space of integrable functions

Definition:

If f is integrable, then the L1 norm of f is

∥f∥ = ∥f∥L1
=:

∫
X

|f(x)| dx
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You can check that this is a norm in the usual sense. For example we
have ∥f + g∥ ≤ ∥f∥+ ∥g∥

Norms allow us to define the distance between two integrable functions
f and g as

d(f, g) = ∥g − f∥

This then defines a metric on L1, and in fact:

Riesz-Fischer Theorem:

(L1, d) is complete

The space of Riemann integrable functions is incomplete:

Non-Example 1:

Let rn be an enumeration of the rational numbers in [0, 1] and let

fn(x) =

{
1 on r1, · · · , rn
0 otherwise

Then (fn) is Cauchy but the limit f = χQ∩[0,1] is not Riemann
integrable (but it is Lebesgue integrable)

Fact:

If fn → f in L1 then there is a subsequence fnk
such that fnk

→ f
a.e.

Similarly you can define Lp with 1 ≤ p <∞ as:
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Definition:

f ∈ Lp if
∫
|f(x)|p <∞ and

∥f∥Lp
=

(∫
|f(x)|p

) 1
p

With a similar proof, you can show that Lp is complete.

The space L2 is particularly noteworthy because it is a Hilbert space,
that is there is an inner product

(f, g) =

∫
f(x)g(x)dx

Whose norm ∥f∥L2
=

√
(f, f) makes L2 complete

The case p = ∞ is defined a bit differently:

Definition:

f ∈ L∞ if there is a C such that |f(x)| ≤ C for a.e. x

∥f∥L∞ = inf {C such that |f(x)| ≤ C for a.e. x}

Those are called the essentially bounded functions. Here L∞ is com-
plete as well, but with a different proof.

6. Convergence Theorems

Finally, we present convergence theorems, which are perhaps the cor-
nerstone of Lebesgue integration theory.
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Question: If fn → f pointwise, does
∫
fndx→

∫
fdx?

We have previously seen that the answer is NO in general but YES if
fn → f uniformly on [a, b]

The following guarantee
∫
fn →

∫
f but with milder conditions:

Bounded Convergence Theorem:

Let fn : X → R measurable and suppose there is C > 0 such that
for all n and x we have

|fn(x)| ≤ C

If fn → f pointwise, then

lim
n→∞

∫
X

fndµ =

∫
X

fdµ

Proof-Sketch: Use Egorov’s Theorem and that fn → f uniformly
implies

∫
fn →

∫
f

Fatou’s Lemma:

Let fn : X → R be measurable with fn ≥ 0. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof: By STEP 3 of the construction, for any g ≤ lim infn→∞ fn
with bounded support, let gn =: min(g, fn), then gn → g a.e. so by
BCT ∫

X

gn →
∫
X

g
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By construction gn ≤ fn and so
∫
X gn ≤

∫
X fn and so taking lim inf we

get

lim inf
n→∞

∫
X

gn ≤ lim inf
n→∞

∫
X

fn∫
X

g = lim
n→∞

∫
X

gn = lim inf
n→∞

∫
X

gn ≤ lim inf
n→∞

∫
X

fn∫
X

g ≤ lim inf
n→∞

∫
X

fn

Taking the sup over g yields the result □

Application: This is INCREDIBLY useful in the calculus of vari-
ations and PDE, which deals with minimizing integrals. Usually, the
best you can do is to find sequence fn of minimizers that converges to
some f . Fatou says that

∫
f is even smaller than all the

∫
fn (in the

lim inf sense) and so f is usually the minimizer you’re looking for!

Monotone Convergence Theorem:

Let fn : X → R be measurable with fn ≥ 0. If fn ↗ f pointwise,
then

lim
n→∞

∫
X

fndµ =

∫
X

fdµ

where this can be infinite.

Proof: Since fn(x) ≤ f(x) a.e. we have
∫
fn ≤

∫
f and taking lim sup:

lim sup
n→∞

∫
X

fn ≤
∫
X

f

But then by Fatou we have∫
X

f ≤ lim inf
n→∞

∫
X

fn ≤ lim sup
n→∞

∫
X

fn ≤
∫
X

f □
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Finally, the Dominated Convergence Theorem is a generalization of
the Bounded convergence theorem, where the constant C is replaced
by any integrable function g(x)

Dominated Convergence Theorem:

Let fn : X → R be measurable with fn(x) → f(x) pointwise

If there exists an integrable function g such that |fn| ≤ g for all
n, then f is integrable and

lim
n→∞

∫
X

fndµ =

∫
X

fdµ

Proof-Sketch: You start by truncating g and then use absolute con-
tinuity of g and the Bounded Convergence Theorem

This is the quintessential theorem that allows us to interchange limits
and integrals, and used all over again in Analysis and PDE.

Here is a simple application:

Example:

Here let X = R and let f be C1 with bounded derivative

Show that, given any integrable function p(x) we have

lim
h→0

∫
R

(
f(x+ h)− f(x)

h

)
p(x)dx =

∫
R
f ′(x)p(x)dx
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First of all, notice

lim
h→0

(
f(x+ h)− f(x)

h

)
p(x) = f ′(x)p(x) pointwise

By the Mean-Value-Theorem, we have

f(x+ h)− f(x)

h
= f ′(c) for some c

Hence

∣∣∣∣(f(x+ h)− f(x)

h

)
p(x)

∣∣∣∣ = |f ′(c)| |p(x)| ≤ C |p(x)| (f ′ is bounded)

Since C |p(x)| is integrable, the result follows from a continuous analog
of the Dominated Convergence Theorem


	1. Step 1: Simple Functions
	2. Step 2: Bounded Non-Negative Functions with Finite Support
	3. Step 3: Non-Negative Functions
	4. Step 4: General Case
	5. Lp spaces
	6. Convergence Theorems

