LECTURE: LEBESGUE INTEGRAL

Setting: Suppose you're given a measure space (X, M, )

So X is a set, M is the family of measurable subsets of X and u is a
measure on M

We will now define the Lebesgue integral of real-valued (measurable)
functions f on X. This is done in four steps:

1. STEP 1: SIMPLE FUNCTIONS

If E is any set then the characteristic function of F is

R

Notice xg(x) is a measurable function if and only if E is measurable

A simple function is a function of the form
S(x) =Dy xm ()
k=1

Where Ej, € M and y;. are real numbers.
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WLOG, we can assume that the E} are disjoint and each ;. is nonzero
and distinct (otherwise just group sets with common value together)

In that case, the range of ¢ is the finite set {y1,...,y,}, and also
Ey = f~'({yr})

The Lebesgue integral of ¢ = > 7, yixg, () is

n

[ odn =3 ()

k=1

It can be shown that this definition is independent of the representation
used, that is if

m n m

o(x) =Y yxm (@) = Y zxm (@) then Y wypu(Ey) =) zou(Fy)

We can also define [, ¢(x)dz where A is any measurable subset of X:

/AWM = /X ¢ xadp = kz:; Yei(Er N A)

This integral has the following nice properties:
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Let ¢ and v be simple functions, then
(1) (Linearity) [y(¢ +c) = [y d+c [x¥.

(2) (Monotonicity) If ¢ <9, then [, ¢ < [, 0
(3) (Additivity) If £ and F are disjoint then

Jur?= oo e

(4) (Triangle Inequality) |¢| is simple and

4= [1a

(5) Define the real-valued function p on M by

E) = [ odn

Then p is a (signed) measure on M

The last one may seem a little strange, but is really useful for proving
the Radon-Nikodym Theorem and gives a new measure on M

Note: Compare this definition with the Riemann integral! In the Rie-
mann integral we focused on the x—values of f, which we partitioned
into pieces, but here we’re focusing more on the y—values y1, 2, - - - , Y,
we’re partitioning the range of f
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2. STEP 2: BOUNDED NON-NEGATIVE FUNCTIONS
WITH FINITE SUPPORT

The support of f is supp(f) = {z| f(z) # 0}

(Sometimes it’s defined as the closure of the above, but the distinction
is not important here)

f is supported on FE if f(z) =0 whenever x ¢ E

In this second step, we’re interested in bounded non-negative functions
such that p (supp(f)) < oo

(Visualize this like functions with compact support, functions that are
0 after a while)

The key to defining [ f(x) here lies in the following

Simple Approximation Lemma:

Let f: (X, M) — [0,00) be bounded, and of finite support.

Then there is an increasing sequence of nonnegative simple func-
tions {o,(z)} ie. 0 < ¢ < o < --- < f such that ¢, — f
pointwise.

Proof-Idea: The idea is first of all to truncate f if it becomes too
large, and then partition the range of those truncated functions into
fine layers, like the lower sum in Riemann integrals.
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We then define the integral in the following way:

If f is non-negative, bounded, and of finite support then

/f(x)dx =: lim On(x)dx
X n—oo X

Where {¢,} is any sequence of bounded simple functions with
same support as f such that ¢, — f pointwise

Problem: We don’t know if this limit is independent of the sequence
(¢,) used, yet alone that it even exists, because ¢,, — f pointwise does
not imply that [ ¢, — [ f. What saves us is:

Egorov’s Theorem:

If w(F) < oo and f,, : E — R is a sequence of functions with
fn — f pointwise on E. Then if ¢ > 0 there is a closed subset
A C F with u(F — A,) < € such that f, — f uniformly on A,

Using Egorov’s Theorem you can show that in fact this limit exists
and is independent of the sequence ¢, used

At this point, you can show that if f is Riemann Integrable on [a, 0]
then the Riemann and Lebesgue integrals of f are the same

3. STEP 3: NON-NEGATIVE FUNCTIONS
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If f is > 0 is measurable, then

/Xf(x)dx =: sgp/Xg(as)dx

Where the sup is taken over all g from STEP 2 with 0 < g < f

f is integrable if / |f(z)| dz < oo
b

(We can actually remove the absolute value since f > 0)

The same properties (linearity, additivity, monotonicity, triangle inte-
quality) hold.

‘ If f is integrable and 0 < g < f then g is integrable \

Proof: Follows because [ |g| < [|f] < o0

A property holds almost everywhere if it holds everywhere ex-
cept for a set of measure 0

If f is integrable then f(z) < oo for almost every x
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Proof: Let £y = {z| f(z) > k} and Ex = {z| f(x) = 0o} then
/ f(z)dz > f(x)dx > / k= ku(Ey)
X Ej, Ej
Hence pu(Ey) < 1 [y f(z)dz — oo and hence p(Ey;) — 0

But since Ej \, Fx and p(Ey) < oo we get pu(Ey) =0

4. STEP 4: GENERAL CASE
For general f, just write f = f* — f~ where

* = max{f, 0} f~ =max{—f,0}.

Here f* are non-negative functions and so

| t@o= [ 5 [

f is integrable if [, |f(z)|dz < oo
Note: [ f is independent of the decomposition used:

If f = fi—fo = g1—g2 where f; and g; are non-negative and measurable

Then f1 + g2 = g1 + f2 so by STEP 3 we have

[i fo=fus [ [ f 5= [ [
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All the facts discussed before (linearity, additivity, monotonicity, tri-
angle inequality) are true here as well

Suppose [ |f|dz =0 then f = 0 almost everywhere

Finally, integrable functions enjoy the following property, called abso-
lute continuity:

If f is integrable then for all € > 0 there is 6 > 0 such that

M(E)<5:>/E|f(:c)|d:c<e

5. LP SPACES

The space of integrable functions has a particularly nice structure.

LY(X) = space of integrable functions

If f is integrable, then the L' norm of f is

1£1 = 171l = /X f(2)|dz
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You can check that this is a norm in the usual sense. For example we
have || +g[ < 7l + |l

Norms allow us to define the distance between two integrable functions
f and g as

d(f,g) = llg — fll

This then defines a metric on L', and in fact:

Riesz-Fischer Theorem:

(L', d) is complete

The space of Riemann integrable functions is incomplete:

Non-Example 1:

Let r, be an enumeration of the rational numbers in [0, 1] and let

fu(z) = {1 onry,---,r,

0 otherwise

Then (f,) is Cauchy but the limit f = xgnp, is not Riemann
integrable (but it is Lebesgue integrable)

If f, — fin L' then there is a subsequence f,, such that f,, — f
a.e.

Similarly you can define L” with 1 < p < oo as:
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felLrif [|f(z)]” < oo and

111, = If(af)p);

With a similar proof, you can show that L? is complete.

The space L? is particularly noteworthy because it is a Hilbert space,
that is there is an inner product

(F9) = [ f)glorde
Whose norm || f||,, = /(f, f) makes L* complete

The case p = oo is defined a bit differently:

f € L™ if there is a C' such that |f(z)| < C for a.e. z

| fll;~ = inf {C such that |f(z)| < C for a.e. z}

Those are called the essentially bounded functions. Here L is com-
plete as well, but with a different proof.

6. CONVERGENCE THEOREMS

Finally, we present convergence theorems, which are perhaps the cor-
nerstone of Lebesgue integration theory.
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Question: If f,, — f pointwise, does [ f,dx — [ fda?

We have previously seen that the answer is NO in general but YES if
frn — f uniformly on [a, b]

The following guarantee [ f, — [ f but with milder conditions:

Bounded Convergence Theorem:

Let f, : X — R measurable and suppose there is C' > 0 such that
for all n and x we have

|fa(z)| < C

If f, — f pointwise, then

o (| o = / e

Proof-Sketch: Use Egorov’s Theorem and that f, — f uniformly
implies [ f, = [ f
Let f, : X — R be measurable with f,, > 0. Then
/ liminf f, <liminf / fn
n—00 n—oo

Proof: By STEP 3 of the construction, for any ¢ < liminf,, .. f,
with bounded support, let g, =: min(g, f,), then g, — g a.e. so by

BCT
o [ 9
X X
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By construction g, < f, and so [y gn < [y f» and so taking liminf we

get
lim inf / gp < liminf / fn
n—00 n—oo
/g: lim gnzliminf/ In < hmlnf/ Jn
X n—oo [y n—0o0 n—00
/ g < hmmf/ fn
n—oo

Taking the sup over g yields the result [l

Application: This is INCREDIBLY useful in the calculus of vari-
ations and PDE, which deals with minimizing integrals. Usually, the
best you can do is to find sequence f,, of minimizers that converges to
some f. Fatou says that [ f is even smaller than all the [ f, (in the
liminf sense) and so f is usually the minimizer you're looking for!

Monotone Convergence Theorem:

Let f, : X — R be measurable with f, > 0. If f, 7 f pointwise,
then

im [ fudn = /Mu
X

n—oo

where this can be infinite.

Proof: Since f,(z) < f(z) a.e. wehave [ f,, < [ f and taking lim sup:

m%w/hﬁ/f
n—00 X X

But then by Fatou we have

f<l1m1nf/ fnglimsup/ fngff ]
n—00 N—00 X X
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Finally, the Dominated Convergence Theorem is a generalization of
the Bounded convergence theorem, where the constant C' is replaced
by any integrable function g(z)

Dominated Convergence Theorem:

Let f, : X — R be measurable with f,,(x) — f(z) pointwise

If there exists an integrable function g such that |f,| < g for all
n, then f is integrable and

n—oo

fim [ fudy = /fdu
X

Proof-Sketch: You start by truncating g and then use absolute con-
tinuity of g and the Bounded Convergence Theorem

This is the quintessential theorem that allows us to interchange limits
and integrals, and used all over again in Analysis and PDE.

Here is a simple application:

Here let X = R and let f be C! with bounded derivative

Show that, given any integrable function p(x) we have

(12251 -
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First of all, notice

. (f(x+h) — f(z)

h—0 h

> p(r) = f/(l')p(a:) pointwise

By the Mean-Value-Theorem, we have

fle+h) - f(x)
h

(Lt =g

Since C'|p(z)| is integrable, the result follows from a continuous analog
of the Dominated Convergence Theorem

= f'(c) for some ¢

= /')l p(x)] < Clp(z)| (f" is bounded)

Hence
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