
LECTURE: MECH AND FORCED VIBRATIONS

Today: Cool Application of Second-Order ODE

1. Masses and Springs

Demo: Masses and Springs (click on “Intro” and on “Lab”)

Set-up: Suppose you have a mass m attached to a spring.

1

https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs_en.html
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At first glance, the motion looks sinusoidal

Let y(t) = displacement of the spring from its equilibrium position L

y(t) = s(t)− L

Where s(t) is position and L is the equilibrium

Then y satisfies the following second-order ODE:

Mass Spring Equation:

my′′ + γ y′ + k y = F (t)

• m = mass

• γ = damping constant, think friction

• k = spring constant, depends only on the spring material

• F (t) = external force, think pushing on a swing

2. Derivation

STEP 1: Start with Newton’s second law of motion

F = ma

Since the displacement is s(t) = y(t) + L we have

a(t) = s′′(t) = (y(t) + L)′′ = y′′(t)

STEP 2: There are three forces acting on the spring:
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(1) String Force: The force Fs pulling the string up

This is given by Hooke’s Law

Fs = −ky

where k > 0 is a constant depending on the material of the spring.

This makes sense, the more you pull the string down, the more it has
a tendency to bounce back up.



4 LECTURE: MECH AND FORCED VIBRATIONS

(2) Damping/Friction: The air resistance force Fr

Fr = −γy′

Where γ > 0 is a positive constant. This is because the faster the
string moves, the more friction there is

(3) External Force F ext = F (t) (given)

Note: We’re not taking into account the effect of gravity here. It’s
not like the ball example that falls down because of gravity. Here if we
don’t touch the spring it just stays at the equilibrium position.

STEP 3: Putting everything together, we get

ma =F

my′′ =Fs + Fr + F ext

my′′ =− ky − γy′ + F (t)

my′′ + ky + γy′ =F (t)

3. Free Vibrations

We can then predict the different kinds of scenarios that can happen:

Example 1: 
2y′′+18y = 0

y(0) =2

y′(0) =6
√
3

This is undamped γ = 0 spring motion without forcing F (t) = 0
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STEP 1: Auxiliary

2r2 + 18 = 0 ⇒ r2 + 9 = 0 ⇒ r = ±3i

y = A cos(3t) +B sin(3t)

STEP 2: Initial Condition:

y(0) = 2 ⇒ A cos(0) +B sin(0) = 2 ⇒ A = 2

y = 2 cos(3t) +B sin(3t)

y′ = −6 sin(3t) + 3B cos(3t)

y′(0) = −6(0) + 3B(1) = 3B = 6
√
3 ⇒ B = 2

√
3

STEP 3: Solution

y = 2 cos(3t) + 2
√
3 sin(3t)
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Notice in fact that this looks like a cosine wave

Some optional lingo:

• The frequency is ω = 3, the 3 in cos(3t)

• The period is 2π
ω = 2π

3
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• The amplitude is

R =
√

A2 +B2 =

√
22 +

(
2
√
3
)2

=
√
4 + 12 = 4

• The phase shift is

δ = tan−1

(
B

A

)
= tan−1

(
2
√
3

2

)
= tan−1(

√
3) =

π

3

• From precalculus, one may write the solution as

y = R cos(ωt− δ) = 4 cos
(
3t− π

3

)
Moral: If there is no damping and no external forcing, the motion is
sinusoidal, like a cos wave

4. Damping

What if now have we damping due to friction, that is γ > 0 ?

In that case, the motion is sinusoidal, but gets damped

Example 2: 
9y′′ + 6y′+37y = 0

y(0) =4

y′(0) =− 2

STEP 1: Auxiliary Equation

9r2 + 6r + 37 = 0
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r =
−6±

√
62 − 4(9)(37)

2(9)

=
−6±

√
−1296

18

(
−1296 = −362

)
=
−6± 36i

18

=− 1

3
± 2i

y = Ae−
t
3 cos (2t) +Be−

t
3 sin(2t)

y(0) = Ae0 cos(0) +Be0 sin(0) = A = 4 ⇒ A = 4

y = 4e−
t
3 cos(2t) +Be−

t
3 sin(2t)

y′ =− 4

3
e−

t
3 cos(2t)− 8e−

t
3 sin(2t)− B

3
e−

t
3 sin(2t) + 2Be−

t
3 cos(2t)

y′(0) = −4

3
e0 cos(0)−8e0 sin(0)−B

3
e0 sin(0)+2Be0 cos(0) = −4

3
+2B = −2

2B = −2 +
4

3
= −2

3
⇒ B = −1

3

y = 4e−
t
3 cos(2t)− 1

3
e−

t
3 sin(2t)
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This explains precisely what is happening here: The motion is sinu-
soidal and then damps off until it becomes constant (in the limit)

5. Forcing
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What is now we’re adding a forcing term F (t)? Think swinging back
and forth on a swing, using your feet to propel it

Example 3: 
y′′+4y = 5 cos(3t)

y(0) =1

y′(0) =− 4

STEP 1: Homogeneous Solution

Aux: r2 + 4 = 0 ⇒ r = ±2i

y0(t) = A cos(2t) +B sin(2t)

STEP 2: Particular Solution

The right hand side is 5 cos(3t) ⇝ r = ±3i which does not coincide
with the homogeneous root r = ±2i, so we guess

yp = A cos(3t) +B sin(3t)

y′′ + 4y =5 cos(3t)

(A cos(3t) +B sin(3t))′′+4 (A cos(3t) +B sin(3t)) = 5 cos(3t)

(−9A cos(3t)− 9B sin(3t))+ (4A cos(3t) + 4B sin(3t)) = 5 cos(3t)

−5A cos(3t)− 5B sin(3t) =5 cos(3t){−5A =5 ⇒ A = −1

−5B =0 ⇒ B = 0

yp(t) = − cos(3t)
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STEP 3: General Solution

y(t) = A cos(2t) +B sin(2t)− cos(3t)

STEP 4: Initial Condition

y(0) =1

A cos(0) +B sin(0)− cos(0) =1

A− 1 =1

A = 2

y′(t) = −2A sin(2t) + 2B cos(2t) + 3 sin(3t)

y′(0) =− 4

−2A sin(0) + 2B cos(0)− 3 sin(0) =− 4

2B =− 4

B =− 2

y = 2 cos(2t)− 2 sin(2t)− cos(3t)
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The motion still looks more or less sinusoidal. The 5 cos(3t) term has
some effect on u(t) but not too much of an effect.

Remark:

y0(t) = 2 cos(2t)− 2 sin(2t) is called the steady-state solution,
the original solution without forcing

yp(t) = − cos(3t) is called the transient solution, which is the
effect due to forcing

y = y0 + yp says that the full solution is the sum of the steady-
state solution and the transient one
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6. Resonance

In the previous example, the forcing frequency r = 3i does not coin-
cide with the frequency r = 2i of the spring. What if they do coincide?
Then we have resonance, and all hell breaks loose.

Example 4: 
y′′ + 4y =12 cos(2t)

y(0) =1

y′(0) =6
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STEP 1: Homogeneous Solution

y0(t) = A cos (2t) +B sin (2t)

STEP 2: Particular Solution

The right-hand-side 12 cos(2t) ⇝ r = ±2i, which coincides with the
homogeneous root r = ±2i, so there is resonance and we have to guess:

yp(t) = At cos(2t) +Bt sin(2t)

(yp)
′ =A cos(2t)− 2At sin(2t) +B sin(2t) + 2Bt cos(2t)

(yp)
′′ =− 2A sin(2t)− 2A sin(2t)− 4At cos(2t)

+ 2B cos(2t) + 2B cos(2t)− 4Bt sin(2t)

=− 4A sin(2t)− 4At cos(2t) + 4B cos(2t)− 4Bt sin(2t)

(yp)
′′ + 4 (yp) = 3 cos(2t)

(−4A sin(2t)(((((((((−4At cos(2t) + 4B cos(2t)((((((((−4Bt sin(2t))

+4 (�������
At cos(2t) +�������

Bt sin(2t)) = 12 cos(2t)

4B cos(2t)− 4A sin(2t) = 12 cos(2t) + 0 sin(2t)

{
4B =12 ⇒ B = 3

−4A =0 ⇒ A = 0

yp(t) = 3t sin(2t)

STEP 3: General Solution

y = A cos(2t) +B sin(2t) + 3t sin(2t)
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STEP 4: Initial Condition

y(0) = 1 ⇒ A cos(0) +B sin(0) + 0 sin(0) = A = 1

y(t) = cos(2t) +B sin(2t) + 3t sin(2t)

y′(t) = −2 sin(2t) + 2B cos(2t) + 3 sin(2t) + 6t cos(2t)

y′(0) = 6 ⇒ −2 sin(0)+2B cos(0)+3 sin(0)+0 cos(0) = 2B = 6 ⇒ B = 3

STEP 5: Answer:

y = cos(2t) + 3 sin(2t) + 3t sin(2t)
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In this case there is resonance and the solution blows up!! This is due
to the resonance term 3t sin(2t) and very different from the previous
example.

Application 1: This explains that when you swing on a swing in a
playground and move your feet just at the right frequency, you get
yourself in a larger and larger swing.

Application 2: Resonance can cause bridges to collapse! This is what
happened for example in the Tacoma Narrows Bridge in 1940, where
the frequency of the wind was equal to the natural frequency of the
bridge, causing it to crash (fortunately no human lives were lost)

Video: Resonance

https://youtu.be/lXyG68_caV4?t=142
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