LECTURE: STEP FUNCTIONS (I)

1. Simple Jumps

Definition:

$$
u_{2}(t)= \begin{cases}0 & \text { if } t<2 \\ 1 & \text { if } t \geq 2\end{cases}
$$

Fact:

$$
\mathcal{L}\left\{u_{2}(t)\right\}=\frac{e^{-2 s}}{s}
$$

We can use u_{c} to describe functions that have jumps.

Example 1:
 $$
\text { Find } \mathcal{L}\{f(t)\} \text { where } f(t)=\left\{\begin{array}{rll} 2 & \text { if } 0 \leq t<4 \\ 5 & \text { if } & 4 \leq t<7 \\ -1 & \text { if } & 7 \leq t<9 \\ 1 & \text { if } t \geq 9 \end{array}\right.
$$

 Find $\mathcal{L}\{f(t)\}$ where $f(t)=\left\{\begin{array}{rll}2 & \text { if } & 0 \leq t<4 \\ 5 & \text { if } & 4 \leq t<7 \\ -1 & \text { if } & 7 \leq t<9 \\ 1 & \text { if } & t \geq 9\end{array}\right.$

 Find $\mathcal{L}\{f(t)\}$ where $f(t)=\left\{\begin{array}{rll}2 & \text { if } & 0 \leq t<4 \\ 5 & \text { if } & 4 \leq t<7 \\ -1 & \text { if } & 7 \leq t<9 \\ 1 & \text { if } & t \geq 9\end{array}\right.$}

STEP 1: Write f in terms of u_{c}
Start with 2 (initial value)
At $t=4$, you jump by $3 \Rightarrow+3 u_{4}$
At $t=7$, you jump by $-6 \Rightarrow-6 u_{7}$

At $t=9$, you jump by $1-(-1)=2 \Rightarrow+2 u_{9}$

$$
f(t)=2+3 u_{4}-6 u_{7}+2 u_{9}
$$

STEP 2: Take Laplace Transforms

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{2\}+3 \mathcal{L}\left\{u_{4}\right\}-6 \mathcal{L}\left\{u_{7}\right\}+2 \mathcal{L}\left\{u_{9}\right\}=\left(\frac{2}{s}\right)+3\left(\frac{e^{-4 s}}{s}\right)-6\left(\frac{e^{-7 s}}{s}\right)+2\left(\frac{e^{-9 s}}{s}\right)
$$

2. More General Jumps

We can even jump by an entire functions, and not just by constants

Example 2:

Find $\mathcal{L}\{g(t)\}$ where $g(t)=\left\{\begin{array}{cl}0 & \text { if } t<2 \\ (t-2)^{3} & \text { if } t \geq 2\end{array}\right.$

STEP 1: Write g in terms of u_{c}
Start at 0 and jump by $(t-2)^{3}$ at $t=2$ and so

$$
g(t)=(t-2)^{3} u_{2}(t)
$$

Note: This makes sense because
If $t<2$ then $g(t)=(t-2)^{3} \underbrace{u_{2}(t)}_{0}=0$
If $t \geq 2$ then $g(t)=(t-2)^{3} \underbrace{u_{2}(t)}_{1}=(t-2)^{3}$

STEP 2: Take Laplace Transforms

$$
g(t)=(t-2)^{3} u_{2}(t)
$$

Slow way:

$$
\begin{aligned}
\mathcal{L}\{g(t)\} & =\int_{0}^{\infty}(t-2)^{3} u_{2}(t) e^{-s t} d t \\
& =\int_{0}^{2}(t-2)^{3} 0 e^{-s t} d t+\int_{2}^{\infty}(t-2)^{3} 1 e^{-s t} d t \\
& =\int_{2}^{\infty}(t-2)^{3} e^{-s t} d t \\
& =\int_{0}^{\infty} u^{3} e^{-s(u+2)} d u \quad(u=t-2) \\
& =\int_{0}^{\infty} u^{3} e^{-s u} e^{-2 s} d u \\
& =e^{-2 s} \int_{0}^{\infty} u^{3} e^{-s u} d u \\
& =e^{-2 s} \mathcal{L}\left\{t^{3}\right\} \\
& =e^{-2 s}\left(\frac{3!}{s^{4}}\right) \quad \text { Because } \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \\
& =e^{-2 s}\left(\frac{6}{s^{4}}\right) \quad
\end{aligned}
$$

Faster Way:

Fact:

$$
\mathcal{L}\left\{f(t-c) u_{c}(t)\right\}=e^{-c s} \mathcal{L}\{f(t)\}
$$

$$
\mathcal{L}\{g(t)\}=\mathcal{L}\left\{(t-2)^{3} u_{2}(t)\right\}=e^{-2 s} \mathcal{L}\left\{t^{3}\right\}=e^{-2 s}\left(\frac{6}{s^{4}}\right)
$$

Example 3:

$$
\mathcal{L}\left\{\cos (2 t-6) u_{3}(t)\right\}
$$

$$
\mathcal{L}\left\{\cos (2 t-6) u_{3}(t)\right\}=\mathcal{L}\left\{\cos (2(t-3)) u_{3}(t)\right\}=e^{-3 s} \mathcal{L}\{\cos (2 t)\}=e^{-3 s}\left(\frac{s}{s^{2}+4}\right)
$$

Example 4:

Find $\mathcal{L}\{g(t)\}$ where $g(t)=\left\{\begin{aligned} 1 & \text { if } t<5 \\ t-4 & \text { if } 5 \leq t<10 \\ 6 & \text { if } t \geq 10\end{aligned}\right.$

STEP 1: Write g in terms of u_{c}
Start at 1
At $t=5$ jump by $t-4-1=t-5$

At $t=10$ jump by $6-(t-4)=10-t=-(t-10)$
(Important to write in terms of $t-10$)

$$
g(t)=1+(t-5) u_{5}(t)-(t-10) u_{10}(t)
$$

STEP 2: Take Laplace transforms

$$
\begin{aligned}
\mathcal{L}\{g(t)\} & =\mathcal{L}\{1\}+\mathcal{L}\left\{(t-5) u_{5}(t)\right\}-\mathcal{L}\left\{(t-10) u_{10}(t)\right\} \\
& =\left(\frac{1}{s}\right)+e^{-5 s} \mathcal{L}\{t\}-e^{-10 s} \mathcal{L}\{t\} \\
& =\left(\frac{1}{s}\right)+e^{-5 s}\left(\frac{1!}{s^{2}}\right)-e^{-10 s}\left(\frac{1!}{s^{2}}\right) \\
& =\left(\frac{1}{s}\right)+\left(\frac{e^{-5 s}}{s^{2}}\right)-\left(\frac{e^{-10 s}}{s^{2}}\right) \\
& =\left(\frac{1}{s}\right)+\left(\frac{1}{s^{2}}\right)\left(e^{-5 s}-e^{-10 s}\right)
\end{aligned}
$$

3. Reverse Way

It's important to be also able to do this in reverse
Note: If you read the above formula from right to left, you get

Fact:

$$
e^{-c s} \mathcal{L}\{f(t)\}=\mathcal{L}\left\{f(t-c) u_{c}(t)\right\}
$$

In other words, an exponential term outside the laplace term causes the function to shift and jump

Example 5:

Find a function whose Laplace transform is

$$
e^{-5 s}\left(\frac{6}{s^{4}}\right)
$$

$$
\begin{gathered}
e^{-5 s}\left(\frac{6}{s^{4}}\right)=e^{-5 s}\left(\frac{3!}{s^{4}}\right)=e^{-5 s} \mathcal{L}\left\{t^{3}\right\}=\mathcal{L}\left\{(t-5)^{3} u_{5}(t)\right\} \\
f(t)=(t-5)^{3} u_{5}(t)
\end{gathered}
$$

Example 6:

Find a function whose Laplace transform is

$$
\left(\frac{8}{s^{2}+16}\right) e^{-7 s}
$$

$$
\begin{gathered}
e^{-7 s}\left(\frac{8}{s^{2}+16}\right)=e^{-7 s} 2\left(\frac{4}{s^{2}+4^{2}}\right)=e^{-7 s} \mathcal{L}\{2 \sin (4 t)\}=\mathcal{L}\left\{2 \sin (4(t-7)) u_{7}(t)\right\} \\
f(t)=2 \sin (4(t-7)) u_{7}(t)
\end{gathered}
$$

Next time: What happens if the exponential term is inside the Laplace transform?

