LECTURE: STEP FUNCTIONS (II)

1. Shifting

If the exponential term is inside the Laplace Transform, we get shifts.

Example 1:

$$
\mathcal{L}\left\{e^{3 t} \cos (2 t)\right\}
$$

$$
\begin{aligned}
\text { Let } & F(s)=\mathcal{L}\{\cos (2 t)\}=\frac{s}{s^{2}+4} \\
\mathcal{L}\left\{e^{3 t} \cos (2 t)\right\} & =\int_{0}^{\infty} e^{3 t} \cos (2 t) e^{-s t} d t \\
& =\int_{0}^{\infty} \cos (2 t) e^{-(s-3) t} d t \\
& =\mathcal{L}\{\cos (2 t)\} \text { but evaluated at } s-3 \\
& =F(s-3) \\
& =\frac{s-3}{(s-3)^{2}+4}
\end{aligned}
$$

Fact:

$$
\mathcal{L}\left\{e^{3 t} \cos (2 t)\right\}=\frac{s-3}{(s-3)^{2}+4}
$$

That is, exponential terms just shift the Laplace transform.

Example 2:

$$
\mathcal{L}\left\{e^{-t} t^{2}\right\}
$$

$$
F(s)=\mathcal{L}\left\{t^{2}\right\}=\frac{2!}{s^{3}}=\frac{2}{s^{3}}
$$

$$
\text { Hence } \mathcal{L}\left\{e^{-t} t^{2}\right\}=F(s-(-1))=F(s+1)=\frac{2}{(s+1)^{3}}
$$

2. Reverse Way

Once again, it's important to do this in reverse:

Example 3:

Find a function whose Laplace transform is

$$
\frac{1}{(s-2)^{2}+1}
$$

This is a shifted version by 2 units of

$$
\frac{1}{s^{2}+1}=\mathcal{L}\{\sin (t)\}
$$

Since exponential terms shift Laplace transforms, we get

$$
\frac{1}{(s-2)^{2}+1}=\mathcal{L}\left\{e^{2 t} \sin (t)\right\}
$$

Answer: $f(t)=e^{2 t} \sin (t)$

Example 4:

Find a function whose Laplace transform is

$$
\frac{6}{(s+3)^{4}}
$$

This is a shifted version of

$$
\frac{6}{s^{4}}=\frac{3!}{s^{4}}=\mathcal{L}\left\{t^{3}\right\}
$$

Since we shifted by $s+3=s-(-3)$ we have

$$
\mathcal{L}\left\{e^{-3 t} t^{3}\right\}=\frac{6}{(s-(-3))^{4}}=\frac{6}{(s+3)^{4}}
$$

Answer: $f(t)=e^{-3 t}\left(t^{3}\right)$

3. Summary: Four Cases

Case 1: Laplace transforms of jumps: an exponential term pops out

$$
\mathcal{L}\left\{(t-2)^{3} u_{2}(t)\right\}=e^{-2 s} \mathcal{L}\left\{t^{3}\right\}=e^{-2 s}\left(\frac{6}{s^{4}}\right)
$$

Case 2: The exponential is outside: Shift and add a jump

$$
e^{-5 s} \mathcal{L}\left\{t^{3}\right\}=\mathcal{L}\left\{(t-5)^{3} u_{5}(t)\right\}
$$

Case 3: The exponential is inside: Shift the Laplace transform

$$
\mathcal{L}\left\{e^{3 t} \cos (2 t)\right\}=\frac{s-3}{(s-3)^{2}+4}
$$

Case 4: Laplace transform is shifted: Add an exponential term inside

$$
\frac{1}{(s-2)^{2}+1}=\mathcal{L}\left\{e^{2 t} \sin (t)\right\}
$$

4. Completing the Square

Example 5:

Find a function whose Laplace transform is

$$
\frac{1}{s^{2}+4 s+5}
$$

Need to complete the square

$$
\frac{1}{s^{2}+4 s+5}=\frac{1}{(s+2)^{2}-4+5}=\frac{1}{(s+2)^{2}+1}
$$

This is a shifted version by -2 units of $\frac{1}{s^{2}+1}=\mathcal{L}\{\sin (t)\}$, therefore

$$
\text { Answer: } f(t)=e^{-2 t} \sin (t)
$$

Example 6:

Find a function whose Laplace transform is

$$
\frac{s}{s^{2}-6 s+13}
$$

Complete the square

$$
\begin{aligned}
\frac{s}{s^{2}-6 s+13} & =\frac{s}{(s-3)^{2}-9+13} \\
& =\frac{s}{(s-3)^{2}+4} \quad \text { Write in terms of } s-3 \\
& =\frac{(s-3)+3}{(s-3)^{2}+4} \\
& =\frac{s-3}{(s-3)^{2}+4}+\frac{3}{(s-3)^{2}+4}
\end{aligned}
$$

This is a shifted version by 3 units of

$$
\begin{gathered}
\frac{s}{s^{2}+4}+\frac{3}{s^{2}+4}=\frac{s}{s^{2}+4}+\frac{3}{2}\left(\frac{2}{s^{2}+4}\right)=\mathcal{L}\left\{\cos (2 t)+\frac{3}{2} \sin (2 t)\right\} \\
\text { Answer: } f(t)=e^{3 t}\left(\cos (2 t)+\frac{3}{2} \sin (2 t)\right)
\end{gathered}
$$

5. Putting everything together

Finally, we can combine this with the jump property:

Example 7:

Find a function whose Laplace transform is

$$
\frac{3(s-2) e^{-3 s}}{s^{2}-4 s+5}
$$

STEP 1: First focus on

$$
\frac{3(s-2)}{s^{2}-4 s+5}
$$

Complete the square on the bottom: $s^{2}-4 s+5=(s-2)^{2}+1$

$$
\frac{3(s-2) e^{-3 s}}{(s-2)^{2}+1}=e^{-3 s}\left(\frac{3(s-2)}{(s-2)^{2}+1}\right)
$$

The terms in parentheses is a shifted version by 2 units of

$$
\frac{3 s}{s^{2}+1}=\mathcal{L}\{3 \cos (t)\}
$$

Therefore $\frac{3(s-2)}{(s-2)^{2}+1}=\mathcal{L}\left\{e^{2 t} 3 \cos (t)\right\}$
STEP 2: Now focus on the exponential term
$e^{-3 s}\left(\frac{3(s-2)}{(s-2)^{2}+1}\right)=e^{-3 s} \mathcal{L}\left\{3 e^{2 t} \cos (t)\right\}=\mathcal{L}\left\{3 e^{2(t-3)} \cos (t-3) u_{3}(t)\right\}$

Answer: $f(t)=3 e^{2(t-3)} \cos (t-3) u_{3}(t)$

6. ODE with Jumps

As an application, let's solve ODE with jumps

Example 8:

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y & =f(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned} \quad \text { if } 0 \leq t<50 \text { where } f(t)=\left\{\begin{aligned}
4 t-20 & \text { if } 5 \leq t<10 \\
20 & \text { if } t \geq 10
\end{aligned}\right.\right.
$$

STEP 1: Write $f(t)$ in terms of u_{c}
Start at 0
At $t=5$, jump by $4 t-20=4(t-5)$
At $t=10$, jump by $20-(4 t-20)=40-4 t=4(10-t)=-4(t-10)$

$$
\begin{aligned}
& f(t)=4(t-5) u_{5}-4(t-10) u_{10} \\
\mathcal{L}\{f(t)\} & =\mathcal{L}\left\{4(t-5) u_{5}(t)\right\}-\mathcal{L}\left\{4(t-10) u_{10}(t)\right\} \\
& =e^{-5 s} \mathcal{L}\{4 t\}-e^{-10 s} \mathcal{L}\{4 t\} \\
& =\frac{4}{s^{2}}\left(e^{-5 s}-e^{-10 s}\right)
\end{aligned}
$$

STEP 2: Next time

