LECTURE: ODE WITH JUMPS

1. ODE with Jumps

Example 1:

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y & =f(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned} \quad \text { where } f(t)=\left\{\begin{aligned}
0 & \text { if } 0 \leq t<5 \\
4 t-20 & \text { if } 5 \leq t<10 \\
20 & \text { if } t \geq 10
\end{aligned}\right.\right.
$$

STEP 1: Last time: By writing $f(t)$ in terms of u_{c} and taking Laplace transforms, we got

$$
\mathcal{L}\{f(t)\}=\frac{4}{s^{2}}\left(e^{-5 s}-e^{-10 s}\right)
$$

STEP 2: Take Laplace Transforms of the ODE

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\{y\} & =\mathcal{L}\{f(t)\} \\
(s^{2} \mathcal{L}\{y\}-\underbrace{s y(0)-y^{\prime}(0)}_{0})+4 \mathcal{L}\{y\} & =\frac{4}{s^{2}}\left(e^{-5 s}-e^{-10 s}\right) \\
\left(s^{2}+4\right) \mathcal{L}\{y\} & =\frac{4}{s^{2}}\left(e^{-5 s}-e^{-10 s}\right) \\
\mathcal{L}\{y\} & =\frac{4}{s^{2}\left(s^{2}+4\right)}\left(e^{-5 s}-e^{-10 s}\right)
\end{aligned}
$$

STEP 3: Partial Fractions

Since $\frac{1}{s^{2}}$ is repeated have to guess:

$$
\begin{aligned}
\frac{4}{s^{2}\left(s^{2}+4\right)} & =\frac{A s+B}{s^{2}}+\frac{C s+D}{s^{2}+4} \\
& =\frac{A s\left(s^{2}+4\right)+B\left(s^{2}+4\right)+(C s+D) s^{2}}{s^{2}\left(s^{2}+4\right)} \\
& =\frac{A s^{3}+4 A s+B s^{2}+4 B+C s^{3}+D s^{2}}{s^{2}\left(s^{2}+4\right)} \\
\frac{0 s^{3}+0 s^{2}+0 s+4}{s^{2}\left(s^{2}+4\right)} & =\frac{(A+C) s^{3}+(B+D) s^{2}+4 A s+4 B}{s^{2}\left(s^{2}+4\right)}
\end{aligned}
$$

$$
\left\{\begin{array} { r l }
{ A + C } & { = 0 } \\
{ B + D } & { = 0 } \\
{ 4 A } & { = 0 } \\
{ 4 B } & { = 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=0 \\
B=1 \\
C=-A=0 \\
D=-B=-1
\end{array}\right.\right.
$$

$$
\frac{4}{s^{2}\left(s^{2}+4\right)}=\frac{0}{s}+\frac{1}{s^{2}}+\frac{0 s-1}{s^{2}+4}=\frac{1}{s^{2}}-\frac{1}{s^{2}+4}
$$

STEP 3:

$$
\begin{aligned}
\mathcal{L}\{y\} & =\left(\frac{1}{s^{2}}-\frac{1}{s^{2}+4}\right)\left(e^{-5 s}-e^{-10 s}\right) \\
& =\mathcal{L}\left\{t-\frac{1}{2} \sin (2 t)\right\}\left(e^{-5 s}-e^{-10 s}\right) \\
& =\mathcal{L}\{h(t)\}\left(e^{-5 s}-e^{-10 s}\right) \quad \text { where } h(t)=t-\frac{1}{2} \sin (2 t) \\
& =\mathcal{L}\left\{h(t-5) u_{5}(t)-h(t-10) u_{10}(t)\right\}
\end{aligned}
$$

STEP 4: Answer:

$$
y=h(t-5) u_{5}(t)-h(t-10) u_{10}(t)
$$

where $h(t)=t-\frac{1}{2} \sin (2 t)$

You can spot the three different regimes:

- On $[0,5] y$ is constant
- On $[5,10] y$ is in a transition phase
- On $[10, \infty) y$ is sinusoidal

2. ODE with Shifts

Example 2:

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y^{\prime}+5 y & =f(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned} \quad \text { where } f(t)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq t<5 \\
5 & \text { if } & 5 \leq t<20 \\
0 & \text { if } & t \geq 20
\end{array}\right.\right.
$$

STEP 1: Start at 0 , jump by 5 at $t=5$, and jump by -5 at $t=20$

$$
f(t)=5 u_{5}(t)-5 u_{20}(t)
$$

$$
\mathcal{L}\{f(t)\}=5\left(\frac{e^{-5 s}}{s}\right)-5\left(\frac{e^{-20 s}}{s}\right)=\left(\frac{5}{s}\right)\left(e^{-5 s}-e^{-20 s}\right)
$$

STEP 2:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\left\{y^{\prime}\right\}+5 \mathcal{L}\{y\}=\mathcal{L}\{f(t)\} \\
&(s^{2} \mathcal{L}\{y\}-\underbrace{s y(0)-y^{\prime}(0)}_{0})+4(s \mathcal{L}\{y\}-\underbrace{y(0)}_{0})+5 \mathcal{L}\{y\}=\left(\frac{5}{s}\right)\left(e^{-5 s}-e^{-20 s}\right) \\
&\left(s^{2}+4 s+5\right) \mathcal{L}\{y\}=\left(\frac{5}{s}\right)\left(e^{-5 s}-e^{-20 s}\right) \\
& \mathcal{L}\{y\}=\frac{5}{s\left(s^{2}+4 s+5\right)}\left(e^{-5 s}-e^{-20 s}\right)
\end{aligned}
$$

STEP 3: Partial Fractions

$$
\begin{aligned}
& \frac{5}{s\left(s^{2}+4 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4 s+5} \\
&=\frac{A\left(s^{2}+4 s+5\right)+(B s+C) s}{s\left(s^{2}+4 s+5\right)} \\
&=\frac{A s^{2}+4 A s+5 A+B s^{2}+C s}{s\left(s^{2}+4 s+5\right)} \\
& \frac{0 s^{2}+0 s+5}{s\left(s^{2}+4 s+5\right)}=\frac{(A+B) s^{2}+(4 A+C) s+5 A}{s\left(s^{2}+4 s+5\right)} \\
&\left\{\begin{array} { r l }
{ A + B } & { = 0 } \\
{ 4 A + C } & { = 0 } \\
{ 5 A } & { = 5 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=1 \\
B=-A=-1 \\
C=-4 A=-4 \\
5
\end{array}\right.\right. \\
& \frac{s\left(s^{2}+4 s+5\right)}{}=\left(\frac{1}{s}\right)+\left(\frac{-s-4}{s^{2}+4 s+5}\right)
\end{aligned}
$$

STEP 4:

$$
\mathcal{L}\{y\}=\left(\frac{1}{s}-\frac{s+4}{s^{2}+4 s+5}\right)\left(e^{-5 s}-e^{-20 s}\right)
$$

Since $\frac{1}{s}=\mathcal{L}\{1\}$ we just need to figure out $\frac{s+4}{s^{2}+4 s+5}=\mathcal{L}\{?\}$

$$
\frac{s+4}{s^{2}+4 s+5}=\frac{s+4}{(s+2)^{2}+1}=\frac{s+2+2}{(s+2)^{2}+1}=\frac{s+2}{(s+2)^{2}+1}+\frac{2}{(s+2)^{2}+1}
$$

This is a shifted version by -2 units of

$$
\begin{aligned}
& \frac{s}{s^{2}+1}+\frac{2}{s^{2}+1}=\mathcal{L}\{\cos (t)+2 \sin (t)\} \\
& \frac{s+4}{s^{2}+4 s+5}=\mathcal{L}\left\{e^{-2 t}(\cos (t)+2 \sin (t))\right\}
\end{aligned}
$$

STEP 5: Back to the ODE

$$
\begin{aligned}
\mathcal{L}\{y\} & =\left(\frac{1}{s}-\frac{s+4}{s^{2}+4 s+5}\right)\left(e^{-5 s}-e^{-20 s}\right) \\
& =\mathcal{L}\left\{1-e^{-2 t}(\cos (t)+2 \sin (t))\right\}\left(e^{-5 s}-e^{-20 s}\right) \\
& =\mathcal{L}\{h(t)\}\left(e^{-5 s}-e^{-20 s}\right) \quad \text { where } h(t)=1-e^{-2 t}(\cos (t)-2 \sin (t)) \\
& =\mathcal{L}\left\{h(t-5) u_{5}(t)-h(t-20) u_{20}(t)\right\}
\end{aligned}
$$

STEP 6: Solution

$$
y=h(t-5) u_{5}(t)-h(t-20) u_{20}(t)
$$

where $h(t)=1-e^{-2 t}(\cos (t)-2 \sin (t))$

Notice again the three different regimes:
On $[0,5] y$ is 0
On $[5,20] y$ is in a transition phase
On $[20, \infty) y$ is sinusoidal with damping

