LECTURE: DIRAC DELTA

Goal: How to model a unit impulse, like being pinched by someone, or being struck by lightning. You can do this with Dirac Delta

1. Dirac and roll

Fact:

There is a "function" $\delta(t)$ such that:
(1) $\delta(t)=0$ except at $t=0$, where $\delta(0)=\infty$
(2) $\int_{-\infty}^{\infty} \delta(t) d t=1$

Think of $\delta(t)$ as an infinite spike at 0

Note: The Dirac Delta NOT a function! Because if f is a function that's 0 almost everywhere, then $\int_{-\infty}^{\infty} f(t) d t=0$ not 1

That's why the Dirac Delta is sometimes called a distribution
Note: This has an interesting probability interpretation: The Dirac Delta models a game where most of the time you lose (get 0 dollars) but there is a very small chance (probability 0) to win ∞ dollars, in such a way that the expected payout is $\int_{-\infty}^{\infty} \delta(t) d t=1$

Aside: If you want to know what the derivative of the Dirac Delta is, check out this video:

Video: Dirac Delta Derivative

2. Dirac Delta Construction

How to construct the Dirac Delta? This is done in stages.
STEP 1: Start with any smooth function $f(t)$ that is 0 outside $[-1,1]$ and positive on $(-1,1)$ and such that $\int_{-\infty}^{\infty} f(t) d t=1$

There are many choices for f, but one that is often used is the bump function $f(t)=e^{\frac{1}{1-\left(t^{2}\right)}}$ on $(-1,1)$ and 0 outside $[-1,1]$

STEP 2: Given $f(t)$ as in STEP 1 consider $2 f(2 t)$ This stretches out f vertically and compresses it horizontally, to make it "spikier"

Then $2 f(2 t)$ is zero outside $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and also

$$
\int_{-\infty}^{\infty} 2 f(2 t) d t=\int_{-\infty}^{\infty} f(u) d u=1
$$

Here we used $u=2 t$ so $d u=2 d t$ and we also used $\int_{-\infty}^{\infty} f=1$
So the new function still has integral 1, but is nonzero on a smaller set.
STEP 3: There's nothing special about 2, and in fact we can now consider $3 f(3 t), 4 f(4 t), 5 f(5 t), \ldots$

The functions become successively narrower and spikier, but their integrals are 1.

STEP 4: The Dirac Delta is just the limit of those functions:

Definition:

$$
\delta(t)=\lim _{n \rightarrow \infty} n f(n t)
$$

In other words, just think of $\delta(t)=1000 f(1000 t)$ where that 1000 is replaced by a very large number.

Then, we can see that $\delta(t)=0$ except at $t=0$, where $\delta(0)=\infty$. And since, at each step, the integrals are 1 , it follows that $\int_{-\infty}^{\infty} \delta(t) d t=1$

3. Dirac Delta Laplace Transform

Question: What is $\mathcal{L}\{\delta(t)\}$?
This is related to the most important property of Dirac Delta:

Fact:

For any function $f(t)$, we have

$$
\int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)
$$

Intuitively this makes sense because $\delta(t)=0$ except for $t=0$, so $\delta(t) f(t)$ "concentrates" f to become $f(0)$. In fact, in advanced math classes, this is sometimes taken as the definition of the Dirac Delta.

Note: An optional proof is given at the end of the notes
Using this property, we can easily find the Laplace transform of $\delta(t)$:

Fact:

$$
\mathcal{L}\{\delta(t)\}=1
$$

Why? Using the definition of the Laplace transform, $\delta(t)=0$ for $t<0$ and the Fact above, we get

$$
\mathcal{L}\{\delta(t)\}=\int_{0}^{\infty} \delta(t) e^{-s t} d t=\int_{-\infty}^{\infty} \delta(t) \underbrace{e^{-s t}}_{f(t)} d t=f(0)=e^{-s(0)}=1
$$

This is interesting because we know $\mathcal{L}\{1\}=\frac{1}{s}$ but we never found a function so far whose Laplace transform is 1

Other points: Similarly, $\delta(t-3)$ is a Dirac Delta at $t=3$

The property becomes $\int_{-\infty}^{\infty} \delta(t-3) f(t) d t=f(3)$ for all f and therefore $\mathcal{L}\{\delta(t-3)\}=\int_{0}^{\infty} \delta(t-3) e^{-s t} d t=\int_{-\infty}^{\infty} \delta(t-3) \underbrace{e^{-s t}}_{f(t)} d t=f(3)=e^{-s(3)}=e^{-3 s}$

Fact:

$$
\mathcal{L}\{\delta(t-c)\}=e^{-c s}
$$

Example 1:

$$
\mathcal{L}\{4 \delta(t)-2 \delta(t-3)+5 \delta(t-6)\}=4-2 e^{-3 s}+5 e^{-6 s}
$$

4. ODE with Dirac Delta

And using this, we can solve ODE with Dirac Delta:

Example 2:
 $$
\left\{\begin{aligned} y^{\prime \prime}-2 y^{\prime}+y & =\delta(t-5) \\ y(0) & =0 \\ y^{\prime}(0) & =0 \end{aligned}\right.
$$

STEP 1: Take Laplace Transforms

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}-2 \mathcal{L}\left\{y^{\prime}\right\}+\mathcal{L}\{y\}=\mathcal{L}\{\delta(t-5)\} \\
& (s^{2} \mathcal{L}\{y\}-\underbrace{s y(0)-y^{\prime}(0)}_{0})-2(s \mathcal{L}\{y\}-\underbrace{y(0)}_{0})+\mathcal{L}\{y\}=e^{-5 s} \\
& \left(s^{2}-2 s+1\right) \mathcal{L}\{y\}=e^{-5 s} \\
& \mathcal{L}\{y\}=\left(\frac{1}{s^{2}-2 s+1}\right) e^{-5 s}
\end{aligned}
$$

STEP 2: Look at

$$
\frac{1}{s^{2}-2 s+1}=\frac{1}{(s-1)^{2}}
$$

This is a shifted version by 1 unit of

$$
\frac{1}{s^{2}}=\mathcal{L}\{t\}
$$

Therefore: $\frac{1}{(s-1)^{2}}=\mathcal{L}\left\{e^{t} t\right\}=\mathcal{L}\left\{t e^{t}\right\}$

STEP 3:

$$
\mathcal{L}\{y\}=\left(\frac{1}{s^{2}-2 s+1}\right) e^{-5 s}=\mathcal{L}\left\{t e^{t}\right\} e^{-5 s}=\mathcal{L}\left\{(t-5) e^{t-5} u_{5}(t)\right\}
$$

STEP 4: Answer:

$$
y=(t-5) e^{t-5} u_{5}(t)
$$

Notice how the solution starts out at 0 but is coming to life at $t=5$

Example 3:

$$
\left\{\begin{aligned}
y^{\prime \prime}+3 y^{\prime}+2 y & =\delta(t-3) \\
y(0) & =2 \\
y^{\prime}(0) & =-3
\end{aligned}\right.
$$

STEP 1: Laplace transforms

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}\right\}+3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\} & =\mathcal{L}\{\delta(t-3)\} \\
\left(s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)\right)+3(s \mathcal{L}\{y\}-y(0))+2 \mathcal{L}\{y\} & =e^{-3 s} \\
\left(s^{2} \mathcal{L}\{y\}-2 s+3\right)+(3 s \mathcal{L}\{y\}-6)+2 \mathcal{L}\{y\} & =e^{-3 s} \\
\left(s^{2}+3 s+2\right) \mathcal{L}\{y\} & =2 s+3+e^{-3 s} \\
\mathcal{L}\{y\}=\left(\frac{2 s+3}{s^{2}+3 s+2}\right) & +\left(\left(\frac{1}{s^{2}+3 s+2}\right) e^{-3 s}\right)
\end{aligned}
$$

STEP 2: Partial Fractions

Note: Here you have to do two partial fractions
First term: Since $s^{2}+3 s+2=(s+1)(s+2)$ we get

$$
\begin{gathered}
\frac{2 s+3}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2}=\frac{A(s+2)+B(s+1)}{(s+1)(s+2)}=\frac{(A+B) s+(2 A+B)}{(s+1)(s+2)} \\
\left\{\begin{array}{c}
A+B=2 \\
2 A+B=3
\end{array}\right.
\end{gathered}
$$

Using $B=2-A$ and plugging this into the second equation you get $A=1$ and $B=1$

$$
\frac{2 s+3}{s^{2}+3 s+2}=\frac{1}{s+1}+\frac{1}{s+2}
$$

Second Term:

$$
\begin{gathered}
\frac{1}{s^{2}+3 s+2}=\frac{A}{s+1}+\frac{B}{s+2}=\frac{(A+B) s+(2 A+B)}{(s+1)(s+2)} \\
\left\{\begin{aligned}
A+B & =0 \\
2 A+B & =1
\end{aligned}\right.
\end{gathered}
$$

Using $B=-A$ and plugging this into the second equation you get $A=1$ and $B=-1$

$$
\frac{1}{s^{2}+3 s+2}=\frac{1}{s+1}-\frac{1}{s+2}
$$

STEP 3:

$$
\begin{aligned}
\mathcal{L}\{y\} & =\left(\frac{2 s+3}{s^{2}+3 s+2}\right)+\left[\left(\frac{1}{s^{2}+3 s+2}\right) e^{-3 s}\right] \\
& =\left(\frac{1}{s+1}+\frac{1}{s+2}\right)+\left[\left(\frac{1}{s+1}-\frac{1}{s+2}\right) e^{-3 s}\right] \\
& =\mathcal{L}\left\{e^{-t}+e^{-2 t}\right\}+\mathcal{L}\left\{e^{-t}-e^{-2 t}\right\} e^{-3 s} \\
& =\mathcal{L}\left\{e^{-t}+e^{-2 t}+\left(e^{-(t-3)}-e^{-2(t-3)}\right) u_{3}(t)\right\}
\end{aligned}
$$

STEP 4: Answer:

$$
y=e^{-t}+e^{-2 t}+\left(e^{-(t-3)}-e^{-2(t-3)}\right) u_{3}(t)
$$

Again the function is getting a kick at $t=3$
5. Appendix: Proof of Fact

Fact:

For any function $g(t)$, we have

$$
\int_{-\infty}^{\infty} \delta(t) g(t) d t=g(0)
$$

(Here we use g because we'll need f for something else)
Why? STEP 1: First of all, recall that

$$
\delta(t)=\lim _{n \rightarrow \infty} n f(n t)
$$

Where f is the bump function from STEP 1 of the Dirac Delta Construction. In particular remember $\int_{-\infty}^{\infty} f(t) d t=1$

STEP 2: For every n we have

$$
\int_{-\infty}^{\infty} n f(n t) g(t) d t=\int_{-\infty}^{\infty} f(u) g\left(\frac{u}{n}\right) d u
$$

Here we used $u=n t$ so $d u=n d t$ and $t=\frac{u}{n}$
STEP 3: Now take $\lim _{n \rightarrow \infty}$ on both sides:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} n f(n t) g(t) d t & =\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(u) g\left(\frac{u}{n}\right) d u \\
\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} n f(n t) g(t) d t & =\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} f(u) g\left(\frac{u}{n}\right) d u \\
\int_{-\infty}^{\infty}\left(\lim _{n \rightarrow \infty} n f(n t)\right) g(t) d t & =\int_{-\infty}^{\infty} f(u)\left(\lim _{n \rightarrow \infty} g\left(\frac{u}{n}\right)\right) d u
\end{aligned}
$$

STEP 4: On the other hand, by definition of $\delta(t)$ we have

$$
\int_{-\infty}^{\infty}\left(\lim _{n \rightarrow \infty} n f(n t)\right) g(t) d t=\int_{-\infty}^{\infty} \delta(t) g(t) d t
$$

On the other hand, we have

$$
\int_{-\infty}^{\infty} f(u)\left(\lim _{n \rightarrow \infty} g\left(\frac{u}{n}\right)\right) d u=\int_{-\infty}^{\infty} f(u) g(0) d u=g(0) \underbrace{\int_{-\infty}^{\infty} f(u) d u}_{1}=g(0)
$$

$$
\text { Hence } \int_{-\infty}^{\infty} \delta(t) g(t) d t=g(0) \checkmark
$$

