LECTURE: EXACT EQUATIONS

1. Introduction

Today: Solve differential equations of the form

$$
P d x+Q d y=0
$$

Here P and Q are functions of x and y
Tons of ODE can be put in this form:

Example 1:

$$
\frac{d y}{d x}=-\left(\frac{2 x y+y^{2}}{x^{2}+2 x y}\right)
$$

Cross-multiplying, this becomes the same as

$$
\begin{aligned}
& \left(x^{2}+2 x y\right) d y=-\left(2 x y+y^{2}\right) d x \\
& \underbrace{\left(2 x y+y^{2}\right)}_{P} d x+\underbrace{\left(x^{2}+2 x y\right)}_{Q} d y=0
\end{aligned}
$$

If the notation $P d x+Q d y$ looks familiar, it's because it is! It's the same notation you used to deal with line integrals in Multivariable Calculus!

2. Multivariable Review

Here's a quick review of the multivariable tools that we'll need.

Recall: (Gradient)

$$
\text { If } f=f(x, y) \text { then } \nabla f=\left\langle f_{x}, f_{y}\right\rangle
$$

Intuitively ∇f is the vector of all derivatives of f

Example 2: (Potential Function)

Let $F(x, y)=\left\langle 2 x y+y^{2}, x^{2}+2 x y\right\rangle$ Find f such that $F=\nabla f$

STEP 1: Check F is conservative:

Recall:

$$
F=\langle P, Q\rangle \text { conservative } \Leftrightarrow P_{y}=Q_{x}
$$

Mnemonic: $\mathbf{P e} \mathbf{Y a m}=$ QuiXotic

$$
\begin{aligned}
P_{y} & =\left(2 x y+y^{2}\right)_{y}=2 x+2 y \\
Q_{x} & =\left(x^{2}+2 x y\right)_{x}=2 x+2 y
\end{aligned}
$$

Since $P_{y}=Q_{x}$ we get that F is conservative \checkmark
Conservative means F has a potential function, there is f with $F=\nabla f$
Why? If $F=\nabla f$ then $\langle P, Q\rangle=\left\langle f_{x}, f_{y}\right\rangle$ so $P=f_{x}$ and $Q=f_{y}$ but by Clairaut, we get

$$
f_{x y}=f_{y x} \Rightarrow\left(f_{x}\right)_{y}=\left(f_{y}\right)_{x} \Rightarrow P_{y}=Q_{x}
$$

So Conservative $\Rightarrow P_{y}=Q_{x}$

The other direction is also true, but harder to show.

STEP 2: Find f

$$
\begin{gathered}
F=\nabla f \Rightarrow\langle P, Q\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
f_{x}=2 x y+y^{2} \Rightarrow f(x, y)=\int 2 x y+y^{2} d x=x^{2} y+y^{2} x+g(y) \\
f_{y}=x^{2}+2 x y \Rightarrow f(x, y)=\int x^{2}+2 x y d y=x^{2} y+y^{2} x+h(x)
\end{gathered}
$$

Here g is any function of y (constant with respect to x) and h is any function of x

Comparing both equations, we get

$$
f(x, y)=x^{2} y+y^{2} x
$$

3. Solving Exact Equations

The method above surprisingly allows us to solve ODEs:

Example 3:

$$
\text { Solve }\left(2 x y+y^{2}\right) d x+\left(x^{2}+2 x y\right) d y=0
$$

Let $F=\langle P, Q\rangle=\left\langle 2 x y+y^{2}, x^{2}+2 x y\right\rangle$
Showed $F=\nabla f$ where $f(x, y)=x^{2} y+x y^{2}$

Fact:

The solutions are $f(x, y)=C$ where C is any constant

So here the solutions are simply

$$
x^{2} y+x y^{2}=C
$$

Definition:

If $P_{y}=Q_{x}$ then $P d x+Q d y=0$ is an exact ODE

Example 4:

$$
(3+2 x y) d x+\left(x^{2}-3 y^{2}\right) d y=0
$$

STEP 1: Check conservative/exact:

$$
\begin{aligned}
P_{y} & =(3+2 x y)_{y}=2 x \\
Q_{x} & =\left(x^{2}-3 y^{2}\right)_{x}=2 x \\
P_{y} & =Q_{x} \checkmark
\end{aligned}
$$

STEP 2: Find f

$$
\begin{gathered}
f_{x}=3+2 x y \Rightarrow f=\int 3+2 x y d x=3 x+x^{2} y+g(y) \\
f_{y}=x^{2}-3 y^{2} \Rightarrow f=\int x^{2}-3 y^{2} d y=x^{2} y-y^{3}+h(x) \\
f(x, y)=3 x+x^{2} y-y^{3}
\end{gathered}
$$

(Don't double-count the $x^{2} y$)
STEP 3: Solution

$$
3 x+x^{2} y-y^{3}=C
$$

Example 5: (extra practice)

$$
\left\{\begin{aligned}
y \cos (x)+2 x e^{y}+\left(\sin (x)+x^{2} e^{y}-1\right) y^{\prime} & =0 \\
y(0) & =1
\end{aligned}\right.
$$

Note: Since $y^{\prime}=\frac{d y}{d x}$, this is the same as saying

$$
\left(y \cos (x)+2 x e^{y}\right) d x+\left(\sin (x)+x^{2} e^{y}-1\right) d y=0
$$

STEP 1: Check F conservative (exact)

$$
\begin{aligned}
P_{y} & =\left(y \cos (x)+2 x e^{y}\right)_{y}=\cos (x)+2 x e^{y} \\
Q_{x} & =\left(\sin (x)+x^{2} e^{y}-1\right)_{x}=\cos (x)+2 x e^{y} \\
P_{y} & =Q_{x} \checkmark
\end{aligned}
$$

STEP 2: Find f
$f_{x}=y \cos (x)+2 x e^{y} \Rightarrow f=\int y \cos (x)+2 x e^{y} d x=y \sin (x)+x^{2} e^{y}+g(y)$
$f_{y}=\sin (x)+x^{2} e^{y}-1 \Rightarrow f=\int \sin (x)+x^{2} e^{y}-1 d y=y \sin (x)+x^{2} e^{y}-y+h(x)$

$$
f(x, y)=y \sin (x)+x^{2} e^{y}-y
$$

STEP 3: Solution

$$
y \sin (x)+x^{2} e^{y}-y=C
$$

STEP 4: Initial Condition: $y(0)=1$.
Plug in $x=0$ and $y=1$ in the equation above:

$$
1 \sin (0)+0^{2} e^{0}-1=C \Rightarrow C=-1
$$

Answer: $y \sin (x)+x^{2} e^{y}-y=-1$

Extra Practice: For an extra example, check out the following video:

Video: Exact Equations

4. Why this works

Here is why this method works. It is a beautiful application of the FTC for line integrals.

Let C be the solution curve from $(0, y(0))$ (initial condition) to a given point (x, y)

Start with $P d x+Q d y=0$ and integrate over C :

$$
\int_{C} P d x+Q d y=\int_{C} 0=0
$$

On the other hand, if you let $F=\langle P, Q\rangle=\nabla f$ then

$$
\begin{array}{r}
0=\int_{C} P d x+Q d y=\int_{C} F \cdot d r=\int_{C} \nabla f \cdot d r \stackrel{\text { FTC }}{=} f(\mathrm{end})-f(\text { start }) \\
=f(x, y)-f(0, y(0))
\end{array}
$$

Hence $f(x, y)-\underbrace{f(0, y(0))}_{\text {Constant }}=0 \Rightarrow f(x, y)=$ Constant
Which is what we wanted to show!
Note: To show that y actually solves the ODE, you start with

$$
f(x, y)=C
$$

And differentiate this with respect to x, using the multivariable chain rule and keeping in mind that $y=y(x)$

$$
\begin{array}{rlrl}
\frac{d}{d x} f(x, y(x)) & =\frac{d}{d x} C \\
f_{x}(x, y)\left(\frac{d x}{d x}\right)+f_{y}(x, y)\left(\frac{d y}{d x}\right) & =0 & & \\
P+Q\left(\frac{d y}{d x}\right) & =0 \quad & & \text { Since }\left\langle f_{x}, f_{y}\right\rangle=\nabla f=\langle P, Q\rangle \\
P d x+Q d y & =0 \quad & & \text { Multiply by } d x
\end{array}
$$

Hence y indeed solves the ODE $P d x+Q d y=0 \checkmark$

5. Non-Exact Equations

Example 6:

$$
\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0
$$

STEP 1: Check exact

$$
\begin{aligned}
P_{y} & =\left(3 x y+y^{2}\right)_{y}=3 x+2 y \\
Q_{x} & =\left(x^{2}+x y\right)_{x}=2 x+y
\end{aligned}
$$

OH NO!!! $P_{y} \neq Q_{x}$ so the equation is not exact, and there's not much we can do

BUUUUUUT sometimes we can multiply the (inexact) equation by an integrating factor to make it exact.

Trick: Multiply the ODE by x (this will be given):

$$
\begin{aligned}
x\left(3 x y+y^{2}\right) d x+x\left(x^{2}+x y\right) d y & =x(0) \\
\left(3 x^{2} y+x y^{2}\right) d x+\left(x^{3}+x^{2} y\right) d y & =0
\end{aligned}
$$

STEP 1: (again) Check exact

$$
\begin{aligned}
P_{y} & =\left(3 x^{2} y+x y^{2}\right)_{y}=3 x^{2}+x(2 y)=3 x^{2}+2 x y \\
Q_{x} & =\left(x^{3}+x^{2} y\right)_{x}=3 x^{2}+2 x y \\
P_{y} & =Q_{x} \checkmark
\end{aligned}
$$

STEP 2: Find f

$$
\begin{gathered}
f_{x}=3 x^{2} y+x y^{2} \Rightarrow f=\int 3 x^{2} y+x y^{2} d x=x^{3} y+\frac{1}{2} x^{2} y^{2}+g(y) \\
f_{y}=x^{3}+x^{2} y \Rightarrow f=\int x^{3}+x^{2} y d y=x^{3} y+\frac{1}{2} x^{2} y^{2}+h(x) \\
f(x, y)=x^{3} y+\frac{1}{2} x^{2} y^{2}
\end{gathered}
$$

$$
x^{3} y+\frac{1}{2} x^{2} y^{2}=C
$$

Aside: How to obtain that integrating factor x ?
Suppose our integrating factor is $g(x, y)$, then multiplying by g, we get

$$
\begin{aligned}
P d x+Q d y & =0 \\
g(P d x+Q d y) & =g 0 \\
(P g) d x+(Q g) d y & =0
\end{aligned}
$$

Since we want the above to be exact, we require

$$
(P g)_{y}=(Q g)_{x}
$$

This gives a partial differential equation for g which, is hard to solve in practice. You can simplify this for example by requiring g to be a function of $x, g=g(x)$, but then you're not guaranteed to have a solution

