APMA 0350 - MIDTERM 1

1. (5 points) Solve the ODE and write your answer in explicit form

$$
\left\{\begin{aligned}
t\left(y^{\prime}\right) & =3 y+t^{5} \quad t>0 \\
y(1) & =5 / 2
\end{aligned}\right.
$$

\square
2. (5 points) Solve the ODE and write your ans in implicit form

$$
\left\{\begin{aligned}
\frac{d y}{d x} & =\frac{\sin (x)-2 x y}{x^{2}-\cos (y)} \\
y\left(\frac{\pi}{2}\right) & =0
\end{aligned}\right.
$$

[^0]3. (5 points) Solve the second-order ODE
\[

\left\{$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+20 y=0 \\
y(0)=2 \\
y^{\prime}(0)=-8
\end{array}
$$\right.
\]

Note: You can do this directly, without differential operators

$$
y=\mid \square
$$

4. (5 points) Find the equilibrium solutions of the following ODE and classify them as stable/unstable/bistable. You do NOT need to draw sample solutions

$$
y^{\prime}=-3(y+2)^{3} y(y-2)^{2}(y-4)
$$

Equilibrium Sol	Classification

5. (5 points) Here is another model for a rabbit population:

- The initial population is 100 rabbits
- Every rabbit has 3 offspring per day
- 15 rabbits per day are eaten by the local bird population

Find a differential equation for the population $P(t)$ of rabbits at time t (where t is in days) and solve it.

Note: You don't need to justify how you obtained your ODE, but you need to justify how you solved it.

| ODE |
| :--- | :--- |
| $P(t)=$ |

(Scratch paper)
(Scratch paper)

[^0]: Answer:

