
LECTURE: NORMAL DISTRIBUTION

1. Normal Distribution (continued)

Recall:

The normal distribution is Y ∼ N(µ, σ). The pdf of Y is

f(y) =
1√
2πσ2

e−
(y−µ)2

2σ2

Recall:

The standard normal distribution is Z ∼ N(0, 1) with pdf

f(z) =
1√
2π

e−
z2

2

Z−table:

Let Z ∼ N(0, 1) and suppose we wish to calculate P (−1 ≤ Z ≤ 1).
Using the density of the standard normal:

P (−1 ≤ Z ≤ 1) =

∫ 1

−1

1√
2π

e−
z2

2 dz

Unfortunately, there is no nice antiderivative for the integrand, so we
cannot compute the integral using the fundamental theorem of cal-
culus. One option is to use numerical integration techniques, which
can be done using software packages such as Matlab or Mathematica.
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Another option is to use tables for the cdf of the standard normal dis-
tribution. Although this is perhaps a bit “old-school,” it is important
you know how to use these tables.

There are many versions of the Z-table. The one that will be pro-
vided (see course website) is the actual cdf for Z, i.e. it gives values
for F (z) = P (Z ≤ z). Since the standard normal is symmetric about
0, some tables only provide values on one side of the mean, since the
others can be computed using symmetry. The table in the textbook
by Wackerly et al, for example, provides P (Z ≥ z) for z ≥ 0.

How do we compute this using a Z-table? Letting F (z) be the cdf
for the standard normal distribution, recall that for any continuous
probability distribution we have:

P (a ≤ Z ≤ b) = F (b)− F (a)

Here P (−1 ≤ Z ≤ 1) = F (1)− F (−1) = 0.8413− 0.1587 = 0.6826

Example 1:

Let Z ∼ N(0, 1) and let F (z) be its cdf.

(a) Find P (Z > 2)

P (Z > 2) = 1− P (Z ≤ 2) = 1− F (2) = 1− 0.9772 = 0.0228

(b) Find P (−2 ≤ Z ≤ 2)

P (−2 ≤ Z ≤ 2) = F (2)− F (−2) = 0.9772− 0.0228 = 0.9544
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(c) Find P (0 ≤ Z ≤ 1.73)

P (0 ≤ Z ≤ 1.73) = F (1.73)− F (0) = 0.9582− 0.5 = 0.4582

Here we use F (0) = P (Z ≤ 0) = 0.5 which is true because the normal
distribution is symmetric about 0

68-95-99 Rule:

Since the standard deviation of Z is 1, then P (−1 ≤ Z ≤ 1) ≈ 0.68
is the probability of falling within one standard deviation of the mean
and P (−2 ≤ Z ≤ 2) ≈ 0.95 is the probability of falling within to stan-
dard deviations of the mean. These are useful numbers to remember,
since they are good guidelines for interpreting the normal distribution.

68-95-99 Rule:

Let Y be a random variable with a normal distribution. Then:

(1) The probability of falling within 1 standard deviation of
the mean is about 0.68

(2) The probability of falling within 2 standard deviations of
the mean is about 0.95

(3) The probability of falling within 3 standard deviations of
the mean is about 0.997

Shifting:

What if we don’t have a standard normal random variable?
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Fun Fact:

We can transform any normal variable Y ∼ N(µ, σ) into a stan-
dard normal random variable Z ∼ N (0, 1) using

Z =
Y − µ

σ

In other words, subtract the mean and divide by the standard dev.

Example 2:

A machine produces balls which diameters that are normally dis-
tributed with mean 3.0005 cm and standard deviation 0.0010
cm. Specifications require the diameters to lie in the interval
3.0000± 0.0020 cm. What fraction of the total production meets
those specifications?

Let Y be the diameter of a ball, then Y ∼ N(3.0005, 0.0010)

Here we want P (2.9980 ≤ Y ≤ 3.0020)

To use the z−table, first convert Y ∼ N (µ, σ) to Z ∼ N (0, 1):

y = 2.9980 z =
2.9980− 3.0005

0.0010
= −2.5

y = 3.0020 z =
3.0020− 3.0005

0.0010
= 1.5

P (2.9980 ≤ Y ≤ 3.0020) =P (−2.5 ≤ Z ≤ 1.5) = F (1.5)− F (−2.5)

=0.9332− 0.0062 = 0.9270

So approximately 92.7% of the balls meet the required specifications.
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2. Exponential Distribution

The final continuous distribution we will discuss is the exponential
distribution. It belongs to the family of gamma distributions, and is
perhaps the most useful member of that family, it is the only one we’ll
consider in this class.

The exponential distribution is used to model the length of time be-
tween independent event with constant average rate. Think for in-
stance the length of time between customer arrivals at a restaurant or
phone calls at a call center.

Notice those are the same events as for the Poisson distribution!

(1) The Poisson distribution (discrete) measures the number
of events which occur in a fixed span of time.

(2) The exponential distribution (continuous) measures the
amount of time between two subsequent events.

It also used to model the lifetime of electronic and mechanical compo-
nents, similar to the computer crash problem in the geometric distri-
bution.
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Definition:

Y has an exponential distribution with parameter λ > 0 if

f(y) =

{
λe−λy y ≥ 0

0 y < 0

We write Y ∼ Exp(λ)

As always, we verify that the exponential distribution integrates to 1
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∫ ∞

−∞
f(y)dy =

∫ ∞

0

λe−λydy
DEF
= lim

t→∞

∫ t

0

λe−λydy = λ lim
t→∞

[
λe−λy

−λ

]t
0

=−
(
lim
t→∞

e−λt − 1
)
= −(0− 1) = 1

Fact:

Suppose Y ∼ Exp (λ) then E(Y ) = 1
λ and Var(Y ) = 1

λ2

E(Y ) =

∫ ∞

−∞
yf(y)dy

=

∫ ∞

0

λye−λydy

= λ lim
t→∞

∫ t

0

ye−λydy

IBP
= λ lim

t→∞

([
−1

λ
ye−λy

]t
0

+
1

λ

∫ t

0

e−λydy

)
= − lim

t→∞
te−λt + 0 +

1

λ

∫ ∞

0

e−λydy︸ ︷︷ ︸
1

=
1

λ

Where in the second-to-last line the limit is 0 by L’Hôpital’s rule.

Similarly, using the Magic Variance Formula and integrating by parts
twice, we can prove the variance of an exponential random variable.
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