
LECTURE: CHEBYSHEV’S INEQUALITY

1. Chebyshev’s Inequality

Markov’s Inequality:

If Y ≥ 0 and a > 0 is given, then

P (Y ≥ a) ≤ E(Y )

a

This estimates P (Y ≥ a) assuming nothing about Y except for its
mean E(Y ). Intuitively, this says that it is unlikely that Y takes on
large values.

IF you happen to also know Var(Y ), you get a better inequality, called

Chebyshev’s Inequality:

If Y is any random variable and a > 0, then

P (|Y − E(Y )| ≥ a) ≤ Var(Y )

a2

This says that if the variance of Y is small, then it is unlikely that Y
is far from its average E(Y ). For example, if on an exam the average
is 50 and the variance is 10, then it’s not likely that you have a 90.
But if the variance is 40, then it’s more likely that you have a 90.
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Why?

Use Markov with Z = (Y − E(Y ))2 ≥ 0 and a2 instead of a to get

P ([Y−E(Y )]2 ≥ a2)
DEF
= P (Z ≥ a2) ≤ E(Z)

a2
DEF
=

E[(Y − E(Y ))2]

a2
=

Var(Y )

a2

P (|Y − E(Y )| ≥ a) = P ([Y − E(Y )]2 ≥ a2) ≤ Var(Y )

a2
✓

Example 1:

Suppose we randomly select an article from a journal article whose
length is distributed with a mean of 1000 words and a standard
deviation of 150 words. Find an upper bound on the probability
that an article is outside of the range 600-1400 words

Let Y be the length of an article in this journal.

Here we know both the mean and the standard deviation of Y , so we
can use Chebyshev’s Inequality.

P ((Y ≥ 1400)∪(Y ≤ 600)) = P (|Y − 1000| ≥ 400) ≤ Var(Y )

4002
=

1502

4002
≈ 0.14

Note: In particular, this implies

P (Y ≥ 1400) ≤ P ((Y ≥ 1400) ∪ (Y ≤ 600)) ≤ 0.14

This is a much better bound than we got using Markov’s Inequality,
which was 0.74

Note: IF the distribution of Y is symmetric about the mean (think
normal) we can divide P ((Y ≥ 1400) ∪ (Y ≤ 600)) by 2 to get:

P (Y ≥ 1400) ≤ P ((Y ≥ 1400) ∪ (Y ≤ 600))

2
≤ 0.14

2
= 0.07
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Which is even better! This is NOT true in general, only if you have
symmetry!

Comparison: For comparison purposes, let’s see how much better
this bound is if we knew the exact distribution of Y

Suppose Y ∼ N(1000, 150). Then, using shifting,

P (600 ≤ Y ≤ 1400) = P

(
600− 1000

150
≤ Z ≤ 1400− 1000

150

)
= P (−2.67 ≤ Z ≤ 2.67)

= F (2.67)− F (−2.67)

= 0.9962− 0.0038 = 0.9924

Hence P ((Y ≥ 1400)∪(Y ≤ 600)) = 1−P (600 ≤ Y ≤ 1400) = 0.0076

Which is waaaay better than the 0.14 and 0.07 bounds we got before!

Moral: Although Chebyshev’s Inequality gives a decent bound on the
probability of outliers, there is no substitute for knowing the actual
probability distribution!

Standard Deviations: Sometimes we like to measure deviation from
the mean in terms of “numbers of standard deviations”. For the nor-
mal distribution, this is encapsulated in the 68-95-99 rule. We can
state Chebyshev’s Inequality in these terms if we like:
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Fact:

Let Y be a random variable with mean µ and variance σ2.

Then the probability of deviating at least k standard deviations
from the mean is bounded by

P (|Y − µ| ≥ kσ) ≤ 1

k2

Why? Take a = kσ in Chebyshev’s Inequality above, then

P (|Y − E(Y )| ≥ kσ) ≤ Var(Y )

(kσ)2
=

σ2

k2σ2
=

1

k2

2. Multivariate Distributions

In practice, we are often interested in the distribution of many quan-
tities at the same time, such as the height and the weight of chim-
panzees.

Since the distribution involves several quantities, we call it a multi-
variate distribution. One question, for instance, might be whether
or not these quantities are independent. Here they probably aren’t,
since taller chimpanzees usually weigh more.

In this section, we will primarily be interested in bivariate distribu-
tions, that is the probability distribution of two random variables.

As before, we start with the discrete case and then consider the con-
tinuous case. First, let’s define the joint probability distribution for a
pair of discrete random variables:
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Definition:

If Y1 and Y2 are two discrete random variables, then the joint
distribution of Y1 and Y2 (joint pmf) is

p(y1, y2) = P (Y1 = y1, Y2 = y2) for all possible pairs (y1, y2)

Here P (Y1 = y1, Y2 = y2) is short-hand for P ((Y1 = y1) ∩ (Y2 = y2))

Example 2:

Suppose you roll two dice. Let X1 be the roll of the first die and
X2 the roll of the second die.

Then the joint distribution of X1 and X2 is given by:

p(x1, x2) =
1

36

Where x1 = 1, 2, 3, 4, 5, 6 and x2 = 1, 2, 3, 4, 5, 6

Just as in the case for a single discrete random variable, all the possible
probabilities are non-negative and they sum to 1.

Fact:

Let Y1 and Y2 be discrete random variables with joint pmf
p(y1, y2). Then

0 ≤ p(y1, y2) ≤ 1 for all y1, y2∑
all (y1,y2)

p(y1, y2) = 1
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Just like for single discrete random variables, we can construct a joint
probability distribution by assigning probabilities that add up to 1:

Example 3:

Suppose you survey undergraduates and ask them 2 questions:

(1) Do you have an exam this week?

(2) How many cups of coffee did you drink today?

Let X1 be the discrete random variable with values {yes, no}
indicating whether or not a student has an exam this week.

Let X2 be the number of cups of coffee a student drank today.
For simplicity, we will let X2 take only the values {0, 1, 2}

We can display the joint probability distribution for the pair (X1, X2)
in a 2 × 3 table. We can choose any probabilities for the six pairs as
long as they sum to 1. One possible choice is shown in the table below.

X2

0 1 2
yes 2/20 3/20 3/20

X1 no 6/20 4/20 2/20

You can check that the sum of the entries in the table is indeed 1

3. Marginal Distribution

Consider again a joint distribution (Y1, Y2) of two discrete random vari-
ables with pmf p(y1, y2) like the exam-coffee example above.



LECTURE: CHEBYSHEV’S INEQUALITY 7

Y1 and Y2 are themselves discrete random variables. What are their
distributions?

Suppose we wish to find the distribution for Y1. To do that, just sum
over all the possible values of Y2

Definition:

If Y1 and Y2 are discrete random variables with joint pmf p(y1, y2)

The marginal distribution of Y1 is given by

p1(y1) =
∑
all y2

p(y1, y2)

And the marginal distribution of Y2 is given by

p2(y2) =
∑
all y1

p(y1, y2)

Here we just sum over all the possibilities of the other random variable.

Example 4:

In the exam-coffee example above, calculate the marginal distri-
butions for X1 and X2

In this case, for the marginal distribution of X2, we sum the values
in each column. Then the bottom row called “Total” is the marginal
distribution of X2. Similarly, we can find the marginal distribution for
X1 by summing each row. Then the right column also labeled “Total”
is the marginal distribution for X1.
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X2

0 1 2 Total
yes 2/20 3/20 3/20 8/20

X1 no 6/20 4/20 2/20 12/20
Total 8/20 7/20 5/20

Note: In fact, the marginal distribution is called “marginal” because
its values lie in the margins of the joint distribution table.

You can check that the two marginal distributions sum to 1 and are
thus valid probability distributions for discrete random variables.
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