LECTURE: CHEBYSHEV'S INEQUALITY

1. Chebyshev's Inequality

Markov's Inequality:

If $Y \geq 0$ and $a>0$ is given, then

$$
P(Y \geq a) \leq \frac{E(Y)}{a}
$$

This estimates $P(Y \geq a)$ assuming nothing about Y except for its mean $E(Y)$. Intuitively, this says that it is unlikely that Y takes on large values.

IF you happen to also know $\operatorname{Var}(Y)$, you get a better inequality, called

Chebyshev's Inequality:

If Y is any random variable and $a>0$, then

$$
P(|Y-E(Y)| \geq a) \leq \frac{\operatorname{Var}(Y)}{a^{2}}
$$

This says that if the variance of Y is small, then it is unlikely that Y is far from its average $E(Y)$. For example, if on an exam the average is 50 and the variance is 10 , then it's not likely that you have a 90 . But if the variance is 40 , then it's more likely that you have a 90 .

Why?

Use Markov with $Z=(Y-E(Y))^{2} \geq 0$ and a^{2} instead of a to get

$$
\begin{gathered}
P\left([Y-E(Y)]^{2} \geq a^{2}\right) \stackrel{\text { DEF }}{=} P\left(Z \geq a^{2}\right) \leq \frac{E(Z)}{a^{2}} \stackrel{\text { DEF }}{=} \frac{E\left[(Y-E(Y))^{2}\right]}{a^{2}}=\frac{\operatorname{Var}(Y)}{a^{2}} \\
P(|Y-E(Y)| \geq a)=P\left([Y-E(Y)]^{2} \geq a^{2}\right) \leq \frac{\operatorname{Var}(Y)}{a^{2}} \checkmark
\end{gathered}
$$

Example 1:

Suppose we randomly select an article from a journal article whose length is distributed with a mean of 1000 words and a standard deviation of 150 words. Find an upper bound on the probability that an article is outside of the range 600-1400 words

Let Y be the length of an article in this journal.
Here we know both the mean and the standard deviation of Y, so we can use Chebyshev's Inequality.

$$
P((Y \geq 1400) \cup(Y \leq 600))=P(|Y-1000| \geq 400) \leq \frac{\operatorname{Var}(Y)}{400^{2}}=\frac{150^{2}}{400^{2}} \approx 0.14
$$

Note: In particular, this implies

$$
P(Y \geq 1400) \leq P((Y \geq 1400) \cup(Y \leq 600)) \leq 0.14
$$

This is a much better bound than we got using Markov's Inequality, which was 0.74

Note: IF the distribution of Y is symmetric about the mean (think normal) we can divide $P((Y \geq 1400) \cup(Y \leq 600))$ by 2 to get:

$$
P(Y \geq 1400) \leq \frac{P((Y \geq 1400) \cup(Y \leq 600))}{2} \leq \frac{0.14}{2}=0.07
$$

Which is even better! This is NOT true in general, only if you have symmetry!

Comparison: For comparison purposes, let's see how much better this bound is if we knew the exact distribution of Y

Suppose $Y \sim \mathrm{~N}(1000,150)$. Then, using shifting,

$$
\begin{aligned}
P(600 \leq Y \leq 1400) & =P\left(\frac{600-1000}{150} \leq Z \leq \frac{1400-1000}{150}\right) \\
& =P(-2.67 \leq Z \leq 2.67) \\
& =F(2.67)-F(-2.67) \\
& =0.9962-0.0038=0.9924
\end{aligned}
$$

Hence $P((Y \geq 1400) \cup(Y \leq 600))=1-P(600 \leq Y \leq 1400)=0.0076$

Which is waaaay better than the 0.14 and 0.07 bounds we got before!
Moral: Although Chebyshev's Inequality gives a decent bound on the probability of outliers, there is no substitute for knowing the actual probability distribution!

Standard Deviations: Sometimes we like to measure deviation from the mean in terms of "numbers of standard deviations". For the normal distribution, this is encapsulated in the 68-95-99 rule. We can state Chebyshev's Inequality in these terms if we like:

Fact:

Let Y be a random variable with mean μ and variance σ^{2}.
Then the probability of deviating at least k standard deviations from the mean is bounded by

$$
P(|Y-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Why? Take $a=k \sigma$ in Chebyshev's Inequality above, then

$$
P(|Y-E(Y)| \geq k \sigma) \leq \frac{\operatorname{Var}(Y)}{(k \sigma)^{2}}=\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}}
$$

2. Multivariate Distributions

In practice, we are often interested in the distribution of many quantities at the same time, such as the height and the weight of chimpanzees.

Since the distribution involves several quantities, we call it a multivariate distribution. One question, for instance, might be whether or not these quantities are independent. Here they probably aren't, since taller chimpanzees usually weigh more.

In this section, we will primarily be interested in bivariate distributions, that is the probability distribution of two random variables.

As before, we start with the discrete case and then consider the continuous case. First, let's define the joint probability distribution for a pair of discrete random variables:

Definition:

If Y_{1} and Y_{2} are two discrete random variables, then the joint distribution of Y_{1} and Y_{2} (joint pmf) is

$$
p\left(y_{1}, y_{2}\right)=P\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right) \quad \text { for all possible pairs }\left(y_{1}, y_{2}\right)
$$

Here $P\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)$ is short-hand for $P\left(\left(Y_{1}=y_{1}\right) \cap\left(Y_{2}=y_{2}\right)\right)$

Example 2:

Suppose you roll two dice. Let X_{1} be the roll of the first die and X_{2} the roll of the second die.

Then the joint distribution of X_{1} and X_{2} is given by:

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{36}
$$

Where $x_{1}=1,2,3,4,5,6$ and $x_{2}=1,2,3,4,5,6$

Just as in the case for a single discrete random variable, all the possible probabilities are non-negative and they sum to 1 .

Fact:

Let Y_{1} and Y_{2} be discrete random variables with joint pmf $p\left(y_{1}, y_{2}\right)$. Then

$$
\begin{aligned}
0 \leq p\left(y_{1}, y_{2}\right) & \leq 1 \text { for all } y_{1}, y_{2} \\
\sum_{\text {all }\left(y_{1}, y_{2}\right)} p\left(y_{1}, y_{2}\right) & =1
\end{aligned}
$$

Just like for single discrete random variables, we can construct a joint probability distribution by assigning probabilities that add up to 1 :

Example 3:

Suppose you survey undergraduates and ask them 2 questions:
(1) Do you have an exam this week?
(2) How many cups of coffee did you drink today?

Let X_{1} be the discrete random variable with values $\{$ yes, no $\}$ indicating whether or not a student has an exam this week.

Let X_{2} be the number of cups of coffee a student drank today. For simplicity, we will let X_{2} take only the values $\{0,1,2\}$

We can display the joint probability distribution for the pair $\left(X_{1}, X_{2}\right)$ in a 2×3 table. We can choose any probabilities for the six pairs as long as they sum to 1 . One possible choice is shown in the table below.

\[

\]

You can check that the sum of the entries in the table is indeed 1

3. Marginal Distribution

Consider again a joint distribution $\left(Y_{1}, Y_{2}\right)$ of two discrete random variables with $\operatorname{pmf} p\left(y_{1}, y_{2}\right)$ like the exam-coffee example above.
Y_{1} and Y_{2} are themselves discrete random variables. What are their distributions?

Suppose we wish to find the distribution for Y_{1}. To do that, just sum over all the possible values of Y_{2}

Definition:

If Y_{1} and Y_{2} are discrete random variables with joint $\operatorname{pmf} p\left(y_{1}, y_{2}\right)$
The marginal distribution of Y_{1} is given by

$$
p_{1}\left(y_{1}\right)=\sum_{\text {all } y_{2}} p\left(y_{1}, y_{2}\right)
$$

And the marginal distribution of Y_{2} is given by

$$
p_{2}\left(y_{2}\right)=\sum_{\text {all } y_{1}} p\left(y_{1}, y_{2}\right)
$$

Here we just sum over all the possibilities of the other random variable.

Example 4:

In the exam-coffee example above, calculate the marginal distributions for X_{1} and X_{2}

In this case, for the marginal distribution of X_{2}, we sum the values in each column. Then the bottom row called "Total" is the marginal distribution of X_{2}. Similarly, we can find the marginal distribution for X_{1} by summing each row. Then the right column also labeled "Total" is the marginal distribution for X_{1}.

Note: In fact, the marginal distribution is called "marginal" because its values lie in the margins of the joint distribution table.

You can check that the two marginal distributions sum to 1 and are thus valid probability distributions for discrete random variables.

