LECTURE: MARGINAL AND CONDITIONAL DISTRIBUTION

1. Multivariate Distributions

Let X and Y be random variables with joint density $f(x, y)$ where

$$
f(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Find $P((X<0.6) \cap(Y>0.2))$

Here we are finding the probability that the pair (X, Y) falls in a specific region of the plane. The first step is to draw the region.

From this picture, we get the limits of integration. Let's integrate in the y direction first. Recall that we found that $k=8$ above. This gives

$$
\begin{aligned}
P(X<0.6 \cap Y>0.2) & =\int_{0.2}^{0.6} \int_{0.2}^{x} 8 x y d y d x \\
& =8 \int_{0.2}^{0.6}\left[x \frac{y^{2}}{2}\right]_{y=0.2}^{y=x} d x \\
& =4 \int_{0.2}^{0.6}\left(x^{3}-0.04 x\right) d x \\
& =4\left[\frac{x^{4}}{4}-0.04 \frac{x^{2}}{2}\right]_{0.2}^{0.6} \\
& =\left(0.6^{4}-0.2^{4}\right)-0.08\left(0.6^{2}-0.2^{2}\right) \\
& =0.1024
\end{aligned}
$$

Note: We could also have integrated in the x direction first.

2. Marginal Distribution

Suppose Y_{1} and Y_{2} are continuous random variables with joint density $f\left(y_{1}, y_{2}\right)$

Then Y_{1} and Y_{2} are themselves random variables, and their densities are called the marginal densities of Y_{1} and Y_{2}.

How do we find the marginal densities? Recall that for the discrete case, we had

$$
p_{1}\left(y_{1}\right)=\sum_{y_{2}} p\left(y_{1}, y_{2}\right)
$$

Here we do the exact same thing, except we replace summation with integration:

Definition:

Let Y_{1} and Y_{2} be cont. random var with joint density $f\left(y_{1}, y_{2}\right)$
Then the marginal densities of Y_{1} and Y_{2} are given by:

$$
f_{1}\left(y_{1}\right)=\int f\left(y_{1}, y_{2}\right) d y_{2} \quad f_{2}\left(y_{2}\right)=\int f\left(y_{1}, y_{2}\right) d y_{1}
$$

In other words, we "integrate out" the other random variable.

Example 1:

Let X and Y be random variables with joint density $f(x, y)$ where

$$
f(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal densities for X and Y

We will denote them by $f_{X}(x)$ and $f_{Y}(y)$
STEP 1: Let's find the marginal density for X by integrating over y

2. Integrate in the x direction next; x goes from 0 to 1 . You can think of this as "summing" the slices you made in the first step, following this bottom arrow.

To integrate in y, we start at $y=0$ and integrate until we reach the line $y=x$. Thus the limits of integration are 0 and x.

$$
f_{X}(x)=\int_{0}^{x} 8 x y d y=8 x\left[\frac{y^{2}}{2}\right]_{y=0}^{y=x}=4 x^{3}
$$

Note: The above expression is only valid for $0 \leq x \leq 1$. Outside that range, the marginal density is 0 . Therefore

$$
f_{X}(x)= \begin{cases}4 x^{3} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

You can check that $f_{X}(x)$ in fact integrates to 1 and that f_{X} is a function of x alone; y does not appear anywhere since we integrated it out!

STEP 2: Find the marginal density for Y by integrating over x
The limits for x are $x=y$ and $x=1$

$$
f_{Y}(y)=\int_{y}^{1} 8 x y d x=8 y\left[\frac{x^{2}}{2}\right]_{x=y}^{x=1}=4 y\left(1-y^{2}\right)
$$

y can take values from 0 to 1 , so the marginal density of Y is

$$
f_{Y}(y)= \begin{cases}4 y\left(1-y^{2}\right) & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Find the expected values for X and Y

Upshot: Since X is a one-dimensional random variable with density f_{X}, we can just use the formula for expectation in 1D

Definition:

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x f_{X}(x) d x=\int_{0}^{1} x\left(4 x^{3}\right) d x=4 \int_{0}^{1} x^{4} d x=4 / 5
$$

Here we used that f_{X} is 0 outside of $[0,1]$
Similarly, we find the expected value of Y.

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} y f_{Y}(y) d y=\int_{0}^{1} y\left[4 y\left(1-y^{2}\right)\right] d y \\
& =4 \int_{0}^{1}\left(y^{2}-y^{4}\right) d y=8 / 15
\end{aligned}
$$

3. Conditional Distribution

Just as in the discrete case, we can talk about conditional distributions, for instance the distribution of Y_{1} given that $\left(Y_{2}=y_{2}\right)$.

Definition:

Let Y_{1} and Y_{2} be continuous random variables with joint density $f\left(y_{1}, y_{2}\right)$ and let $f_{2}\left(y_{2}\right)$ be the marginal density of Y_{2}

Then the conditional density of Y_{1} given $\left(Y_{2}=y_{2}\right)$ is:

$$
f\left(y_{1} \mid y_{2}\right)=\frac{f\left(y_{1}, y_{2}\right)}{f_{2}\left(y_{2}\right)}
$$

In other words, the conditional density is the joint density divided by the marginal density. Similarly, we can define define the conditional density of Y_{2} given $\left(Y_{1}=y_{1}\right)$

Mnemonic: Although this notation makes no sense, one way to remember this is

$$
f\left(y_{1} \mid y_{2}\right)=\frac{f\left(Y_{1}=y_{1} \text { and } Y_{2}=y_{2}\right)}{f\left(Y_{2}=y_{2}\right)}=\frac{f\left(y_{1}, y_{2}\right)}{f_{2}\left(y_{2}\right)}
$$

(c) Find the conditional density of X given $(Y=y)$

Application: For concreteness, think of X as the temperature of a random spot in the world and Y as a random time and $y=12 \mathrm{pm}$. Then $f(x \mid y)$ gives you the density of the temperature in the world at noon.

$$
f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{8 x y}{4 y\left(1-y^{2}\right)}=\frac{2 x}{1-y^{2}}
$$

Warning: We are not done! We need to figure out for which x and y this is valid. Note that if $(Y=y)$, then, in the picture above, X can only range from the diagonal line $y=x$ to 1 , i.e. X must be between
y and 1. Therefore we get:

$$
f(x \mid y)= \begin{cases}\frac{2 x}{1-y^{2}} & y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Note: here y is fixed, so we only care about the range of x
(d) Find the conditional density of Y given $(X=x)$

$$
f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{8 x y}{4 x^{3}}=\frac{2 y}{x^{2}}
$$

Moreover, if $(X=x)$, then y can only range from 0 to the diagonal line $y=x$, i.e. Y must be between 0 and x

$$
f(y \mid x)= \begin{cases}\frac{2 y}{x^{2}} & 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

(e) Find the (conditional) expected value of X given $(Y=y)$

The conditional density $f(x \mid y)$ is just a probability density of a continuous random variable in terms of x, so we can find its expected value using the standard expected value formula

Definition:

$$
E[X \mid Y=y]=\int_{-\infty}^{\infty} x f(x \mid y) d x
$$

$$
\begin{aligned}
E[X \mid Y=y] & =\int_{-\infty}^{\infty} x f(x \mid y) d x=\int_{y}^{1} x\left(\frac{2 x}{1-y^{2}}\right) d x=\frac{2}{1-y^{2}} \int_{y}^{1} x^{2} \\
& =\frac{2}{1-y^{2}}\left[\frac{x^{3}}{3}\right]_{x=y}^{x=1}=\frac{2\left(1-y^{3}\right)}{3\left(1-y^{2}\right)}
\end{aligned}
$$

Note that we used the bounds on the conditional density in the second line above. Unsurprisingly, this depends on y.

Application: In terms of our previous example, $E[X \mid Y=y]$ gives you the average temperature of earth at $y=12 \mathrm{pm}$.

4. IndEPENDENCE

Definition:

Let Y_{1} and Y_{2} have joint density $f\left(y_{1}, y_{2}\right)$ and $f_{1}\left(y_{1}\right)$ and $f_{2}\left(y_{2}\right)$ be the marginal densities of Y_{1} and Y_{2}.

Then Y_{1} and Y_{2} are independent if

$$
f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \quad \text { for all } y_{1}, y_{2}
$$

In other words, two continuous random variables are independent if their joint density is the product of the two marginal densities.
(f) Are X and Y independent?
$f(x, y)=8 x y \neq f_{X}(x) f_{Y}(y)=4 x^{3} 4 y\left(1-y^{2}\right)$ hence the answer is NO

