
LECTURE: MARGINAL AND CONDITIONAL
DISTRIBUTION

1. Multivariate Distributions

Let X and Y be random variables with joint density f(x, y) where

f(x, y) =

{
8xy 0 ≤ y ≤ x ≤ 1

0 otherwise

(b) Find P ((X < 0.6) ∩ (Y > 0.2))

Here we are finding the probability that the pair (X, Y ) falls in a
specific region of the plane. The first step is to draw the region.
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From this picture, we get the limits of integration. Let’s integrate in
the y direction first. Recall that we found that k = 8 above. This gives

P (X < 0.6 ∩ Y > 0.2) =

∫ 0.6

0.2

∫ x

0.2

8xy dydx

= 8

∫ 0.6

0.2

[
x
y2

2

]y=x

y=0.2

dx

= 4

∫ 0.6

0.2

(x3 − 0.04x)dx

= 4

[
x4

4
− 0.04

x2

2

]0.6
0.2

=
(
0.64 − 0.24

)
− 0.08

(
0.62 − 0.22

)
= 0.1024

Note: We could also have integrated in the x direction first.

2. Marginal Distribution

Suppose Y1 and Y2 are continuous random variables with joint density
f(y1, y2)

Then Y1 and Y2 are themselves random variables, and their densities
are called the marginal densities of Y1 and Y2.

How do we find the marginal densities? Recall that for the discrete
case, we had

p1(y1) =
∑
y2

p(y1, y2)

Here we do the exact same thing, except we replace summation with
integration:
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Definition:

Let Y1 and Y2 be cont. random var with joint density f(y1, y2)

Then the marginal densities of Y1 and Y2 are given by:

f1(y1) =

∫
f(y1, y2)dy2 f2(y2) =

∫
f(y1, y2)dy1

In other words, we “integrate out” the other random variable.

Example 1:

Let X and Y be random variables with joint density f(x, y) where

f(x, y) =

{
8xy 0 ≤ y ≤ x ≤ 1

0 otherwise

(a) Find the marginal densities for X and Y

We will denote them by fX(x) and fY (y)

STEP 1: Let’s find the marginal density for X by integrating over y
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1. Integrate in the y direction first; y goes 
from the line y = 0 to the line y = x. You can 
think of this as integrating vertical “slices” 
of the region, represented by the arrows.

2. Integrate in the x direction next; x goes from 0 to 1. You can 
think of this as “summing” the slices you made in the first step, 

following this bottom arrow. 

To integrate in y, we start at y = 0 and integrate until we reach the
line y = x. Thus the limits of integration are 0 and x.

fX(x) =

∫ x

0

8xy dy = 8x

[
y2

2

]y=x

y=0

= 4x3

Note: The above expression is only valid for 0 ≤ x ≤ 1. Outside that
range, the marginal density is 0. Therefore

fX(x) =

{
4x3 0 ≤ x ≤ 1

0 otherwise
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You can check that fX(x) in fact integrates to 1 and that fX is a func-
tion of x alone; y does not appear anywhere since we integrated it out!

STEP 2: Find the marginal density for Y by integrating over x

The limits for x are x = y and x = 1
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1. Integrate in the x direction first; x goes 
from the line x = y to the line x = 1. You can 

think of this as integrating horizontal “slices” 
of the region, represented by the arrows. 2. Integrate in the y 

direction next; y 
goes from 0 to 1. 
You can think of 

this as “summing” 
the slices you 

made in the first 
step, following this 
arrow on the right. 

 y = x

fY (y) =

∫ 1

y

8xy dx = 8y

[
x2

2

]x=1

x=y

= 4y(1− y2)

y can take values from 0 to 1, so the marginal density of Y is

fY (y) =

{
4y(1− y2) 0 ≤ y ≤ 1

0 otherwise

(b) Find the expected values for X and Y
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Upshot: Since X is a one-dimensional random variable with density
fX , we can just use the formula for expectation in 1D

Definition:

E(X) =

∫ ∞

−∞
xfX(x)dx

E(X) =

∫ ∞

−∞
xfX(x)dx =

∫ 1

0

xfX(x)dx =

∫ 1

0

x
(
4x3

)
dx = 4

∫ 1

0

x4dx = 4/5

Here we used that fX is 0 outside of [0, 1]

Similarly, we find the expected value of Y .

E(Y ) =

∫ ∞

−∞
yfY (y)dy =

∫ 1

0

yfY (y) dy =

∫ 1

0

y
[
4y(1− y2)

]
dy

=4

∫ 1

0

(y2 − y4)dy = 8/15

3. Conditional Distribution

Just as in the discrete case, we can talk about conditional distribu-
tions, for instance the distribution of Y1 given that (Y2 = y2).
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Definition:

Let Y1 and Y2 be continuous random variables with joint density
f(y1, y2) and let f2(y2) be the marginal density of Y2

Then the conditional density of Y1 given (Y2 = y2) is:

f(y1|y2) =
f(y1, y2)

f2(y2)

In other words, the conditional density is the joint density divided by
the marginal density. Similarly, we can define define the conditional
density of Y2 given (Y1 = y1)

Mnemonic: Although this notation makes no sense, one way to re-
member this is

f(y1|y2) =
f(Y1 = y1 and Y2 = y2)

f(Y2 = y2)
=

f(y1, y2)

f2(y2)

(c) Find the conditional density of X given (Y = y)

Application: For concreteness, think of X as the temperature of a
random spot in the world and Y as a random time and y = 12 pm.
Then f(x|y) gives you the density of the temperature in the world at
noon.

f(x|y) = f(x, y)

fY (y)
=

8xy

4y(1− y2)
=

2x

1− y2

Warning: We are not done! We need to figure out for which x and y
this is valid. Note that if (Y = y), then, in the picture above, X can
only range from the diagonal line y = x to 1, i.e. X must be between
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y and 1. Therefore we get:

f(x|y) =

{
2x

1−y2 y ≤ x ≤ 1

0 otherwise

Note: here y is fixed, so we only care about the range of x

(d) Find the conditional density of Y given (X = x)

f(y|x) = f(x, y)

fX(x)
=

8xy

4x3
=

2y

x2

Moreover, if (X = x), then y can only range from 0 to the diagonal
line y = x, i.e. Y must be between 0 and x

f(y|x) =

{
2y
x2 0 ≤ y ≤ x

0 otherwise

(e) Find the (conditional) expected value of X given (Y = y)

The conditional density f(x|y) is just a probability density of a contin-
uous random variable in terms of x, so we can find its expected value
using the standard expected value formula

Definition:

E[X|Y = y] =

∫ ∞

−∞
xf(x|y)dx
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E[X|Y = y] =

∫ ∞

−∞
xf(x|y)dx =

∫ 1

y

x

(
2x

1− y2

)
dx =

2

1− y2

∫ 1

y

x2

=
2

1− y2

[
x3

3

]x=1

x=y

=
2(1− y3)

3(1− y2)

Note that we used the bounds on the conditional density in the second
line above. Unsurprisingly, this depends on y.

Application: In terms of our previous example, E[X|Y = y] gives
you the average temperature of earth at y =12 pm.

4. Independence
Definition:

Let Y1 and Y2 have joint density f(y1, y2) and f1(y1) and f2(y2)
be the marginal densities of Y1 and Y2.

Then Y1 and Y2 are independent if

f(y1, y2) = f1(y1)f2(y2) for all y1, y2

In other words, two continuous random variables are independent if
their joint density is the product of the two marginal densities.

(f) Are X and Y independent?

f(x, y) = 8xy ̸= fX(x)fY (y) = 4x34y(1− y2) hence the answer is NO
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