LECTURE: JOINT EXPECTATION

1. Another Example

Example 1:

Let X and Y be random variables with joint density $f(x, y)$ where

$$
f(x, y)= \begin{cases}c x & 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of c such that $f(x, y)$ is a valid joint probability density function

The first step is always to draw the region.

$$
1=\int_{0}^{1} \int_{0}^{y} c x d x d y=c \int_{0}^{1}\left[\frac{x^{2}}{2}\right]_{x=0}^{x=y} d y=c \int_{0}^{1} \frac{y^{2}}{2} d y=c\left[\frac{y^{3}}{6}\right]_{0}^{1}=\frac{c}{6}
$$

Therefore $c=6$
(b) Find the marginal densities for X and Y

For the marginal density of X we first integrate out y.

$$
f_{X}(x)=\int_{x}^{1} 6 x d y=[6 x y]_{y=x}^{y=1}=6 x(1-x)
$$

x can freely range from 0 to 1 , so the marginal density of X is:

$$
f_{X}(x)= \begin{cases}6 x(1-x) & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

For the marginal density of Y, we first integrate out x :

$$
f_{Y}(y)=\int_{0}^{y} 6 x d x=\left[3 x^{2}\right]_{x=0}^{x=y}=3 y^{2}
$$

y can freely range from 0 to 1 , so the marginal density of Y is:

$$
f_{Y}(y)= \begin{cases}3 y^{2} & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(c) What is the expected value of X ?

$$
\begin{aligned}
& E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x 6 x(1-x) d x=6 \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& \quad=6\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=6\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{2}
\end{aligned}
$$

Similarly we can find the expected value of Y using the marginal density for Y.
(d) What is the conditional density for X given $(Y=y)$?

$$
f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{6 x}{3 y^{2}}=\frac{2 x}{y^{2}}
$$

Given that $Y=y, x$ can range from 0 to y, thus the cond. density is:

$$
f(x \mid y)= \begin{cases}\frac{2 x}{y^{2}} & 0 \leq x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

(e) What is the expected value of X given $(Y=y)$?

$$
E[X \mid Y=y]=\int_{-\infty}^{\infty} x f(x \mid y) d x=\int_{0}^{y} x \frac{2 x}{y^{2}} d x=\int_{0}^{y} \frac{2 x^{2}}{y^{2}} d x=\left[\frac{2 x^{3}}{3 y^{2}}\right]_{x=0}^{x=y}=\frac{2 y}{3}
$$

Fun Fact: There is in fact an analog of Bayes' Formula, provided you replace sums with integrals!

2. Joint Uniform Distribution

As an example of a joint distribution, we will consider the bivariate uniform distribution.

Recall:

Y has uniform distribution on $[a, b]$ if the density of Y is

$$
f(y)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq y \leq b \\ 0 & \text { otherwise }\end{cases}
$$

We write $Y \sim \operatorname{Unif}(a, b)$

Uniform(a, b) density function

Here $b-a$ is the length of $[a, b]$
For the two-dimensional uniform distribution, it's the same thing, except that we replace length with areas:

Definition:

$\left(Y_{1}, Y_{2}\right)$ have a joint uniform distribution on a set A if the joint pdf of $\left(Y_{1}, Y_{2}\right)$ is

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{\operatorname{Area}(A)} & \text { if }\left(y_{1}, y_{2}\right) \in A \\ 0 & \text { otherwise }\end{cases}
$$

You can check that, in this way, f is a valid probability density, that is, it's ≥ 0 and its total area is 1

Example 2:

Let X and Y have a joint uniform distribution on the equilateral right triangle A below with sides of length 2 .

(a) What is the probability that the pair (X, Y) lies within the small square below, with corners $(1,1)$ and $(2,0)$?

The small square is half the area of the right triangle, so, since this is the uniform distribution, the probability that (X, Y) lies within the small square is $1 / 2$.
(b) What is the joint probability density of (X, Y) ?

Since the area of the triangle is 2 and, looking at the picture above, we see that $y \geq 0, y \leq x$, and $x \leq 2$. Thus the joint density is:

$$
f(x, y)= \begin{cases}\frac{1}{2} & 0 \leq y \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(c) What are the marginal densities of X and Y ?

As always, we refer to the picture of the region to get the correct limits of integration.

For the marginal density of X we integrate over y :

$$
f_{X}(x)=\int_{0}^{x} \frac{1}{2} d y=\frac{1}{2}[y]_{y=0}^{y=x}=\frac{x}{2}
$$

With the correct bounds, the marginal density of X is:

$$
f_{X}(x)= \begin{cases}\frac{x}{2} & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

For the marginal density of Y we integrate over x :

$$
f_{Y}(y)=\int_{y}^{2} \frac{1}{2} d x=\frac{1}{2}[x]_{x=y}^{1}=\frac{2-y}{2}
$$

With the correct bounds, the marginal density of Y is:

$$
f_{Y}(y)= \begin{cases}\frac{2-y}{2} & 0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

3. Joint Expectation

Recall that in the 1D case, we defined the expected value of a function $g(y)$ of a random variable Y to be:

Recall:

If Y is a discrete random variable with $\operatorname{pmf} p(y)$ then

$$
E[g(Y)]=\sum_{\text {all } y} g(y) p(y)
$$

If Y is a continuous random variable with density $f(y)$ then

$$
E[g(Y)]=\int_{-\infty}^{\infty} g(y) f(y) d y
$$

The expected value of a function of two random variables is defined in the same way, except we use the joint pmf or joint density.

Definition:

If Y_{1} and Y_{2} be two discrete random variables with joint pmf $p\left(y_{1}, y_{2}\right)$ then

$$
E\left[g\left(Y_{1}, Y_{2}\right)\right]=\sum_{\text {all } y_{1} \text { all } y_{2}} g\left(y_{1}, y_{2}\right) p\left(y_{1}, y_{2}\right)
$$

Definition:

If Y_{1} and Y_{2} be two cont. random variables with joint density $f\left(y_{1}, y_{2}\right)$ then

$$
E\left[g\left(Y_{1}, Y_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(y_{1}, y_{2}\right) f\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

