
LECTURE: COVARIANCE

1. Joint Expectation (continued)

Definition:

If Y1 and Y2 be two discrete random variables with joint pmf
p(y1, y2) then

E[g(Y1, Y2)] =
∑
all y1

∑
all y2

g(y1, y2)p(y1, y2)

If Y1 and Y2 be two continuous random variables with joint density
f(y1, y2) then

E[g(Y1, Y2)] =

∫ ∞

−∞

∫ ∞

−∞
g(y1, y2)f(y1, y2)dy1dy2

A very useful special case is g(Y1, Y2) = Y1Y2 which will lead to covari-
ance (see below)

Example 1:

LetX and Y be random variables with joint density f(x, y) where:

f(x, y) =

{
8xy 0 ≤ y ≤ x ≤ 1

0 otherwise

Find E(XY )
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Here g(XY ) = XY and so

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy

As usual, looking at the picture, we get

E(XY ) =

∫ 1

0

∫ x

0

xy(8xy)dydx

= 8

∫ 1

0

∫ x

0

x2y2dydx

= 8

∫ 1

0

x2
[
y3

3

]y=x

y=0

dx

= 8

∫ 1

0

x2
(
x3

3

)
dx

=
8

3

∫ 1

0

x5dx

=
8

3

[
x6

6

]1
0

=
8

18
=

4

9

Fact:

Let Y1 and Y2 be two independent random variables. Then

E(Y1Y2) = E(Y1)E(Y2)

An analogous result holds for the product of any number of indepen-
dent random variables.
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2. Covariance and Correlation

Heuristically, two random variables are independent if their outcomes
do not affect each other.

Suppose we have two random variables X and Y . There are two ex-
treme cases to consider:

(1) X and Y are independent, so they don’t affect each other
at all, think for instance two coin flips.

(2) X and Y are completely dependent, i.e. the output of
one random variable determines the output of the other
random. Think for example if Y = 2X. In this case,
knowledge of output of either random variable gives you
knowledge of the output of the other random variable.

There is an entire spectrum between these two extremes. The covari-
ance measures how much X and Y depend on each other:

Definition:

Let Y1 and Y2 be two random variables, then the covariance of
Y1 and Y2 is

Cov(Y1, Y2) = E[(Y1 − E(Y1))(Y2 − E(Y2))]

A larger covariance indicates a greater dependence between Y1 and Y2.

Usually Cov(Y1, Y2) depends on the units used for Y1 and Y2. To solve
this problem, we standardize to get the correlation coefficient:
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Definition:

Let Y1 and Y2 be two random variables with standard deviations
σ1 and σ2. Then the correlation coefficient is:

ρ =
Cov(Y1, Y2)

σ1σ2

Notice that we always have −1 ≤ ρ ≤ 1 it measures the strength of
the relationship between Y1 and Y2

Special Cases:

(1) If ρ = 1 then we have perfect correlation, like Y2 = 2Y1, all
points of (Y1, Y2) fall on a straight line with positive slope.

(2) If ρ = 0 then there is no correlation between Y1 and Y2, they
are uncorrelated

(3) If ρ = −1 then we have a perfect negative correlation, like
Y2 = −2Y1, all points of (Y1, Y2) fall on a straight line with
negative slope.

And any ρ-values in between indicate a correlation in between those
extreme cases. For example, if ρ = 0.5, then Y1 and Y2 are somehow
related, although not perfectly.

Warning: Correlation is not the same as independence! Indepen-
dence implies uncorrelated but not the other way around (see below)
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Facts:

(1) Cov(Y1, Y2) = Cov(Y2, Y1)

(2) Cov(X,X) = Var(X)

3. Magic Covariance Formula

Just like with variance, the covariance is not generally computed di-
rectly. Instead, we use the Magic Covariance Formula:

Magic Covariance Formula:

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2)

Why? Let E(Y1) = µ1 and E(Y2) = µ2, then

Cov(Y1, Y2) = E[(Y1 − µ1)(Y2 − µ2)]

= E(Y1Y2 − µ1Y2 − µ2Y1 + µ1µ2)

= E(Y1Y2)− µ1E(Y2)− µ2E(Y1) + µ1µ2

= E(Y1Y2)− µ1µ2 − µ2µ1 + µ1µ2

= E(Y1Y2)− µ1µ2

Example 2:

Let X and Y be random variables with joint density f(x, y) where

f(x, y) =

{
8xy 0 ≤ y ≤ x ≤ 1

0 otherwise

Find Cov(X, Y )
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Previously, we have found that E(X) = 4/5 and E(Y ) = 8/15 and
E(XY ) = 4/9.

Using the Magic Covariance Formula,

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 4/9− (4/5)(8/15) = 4/225

4. Independence

What happens if two random variables are independent?

Fact:

If Y1 and Y2 are independent, then Cov(Y1, Y2) = 0

Why?

Cov(Y1, Y2) = E(Y1Y2)−E(Y1)E(Y2) = E(Y1)E(Y2)−E(Y1)E(Y2) = 0

Warning: The converse, is not generally true. In other words, if the
covariance of two random variables is 0, we cannot conclude that they
are independent.

The final result in this section concerns the variance of the sum of two
random variables:

Fact:

Let Y1 and Y2 be two random variables. Then

Var(Y1 + Y2) = Var(Y1) + Var(Y2) + 2Cov(Y1, Y2)

If Y1 and Y2 are independent, then

Var(Y1 + Y2) = Var(Y1) + Var(Y2)
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Why? To see this, we use the Magic Variance Formula:

Var(Y1 + Y2) = E[(Y1 + Y2)
2]− [E(Y1 + Y2)]

2

= E(Y 2
1 + 2Y1Y2 + Y 2

2 )− [E(Y1) + E(Y2)]
2

= E(Y 2
1 ) + 2E(Y1Y2) + E(Y 2

2 )− [E(Y1)]
2 − 2E(Y1)E(Y2)− [E(Y2)]

2

= (E(Y 2
1 )− [E(Y1)]

2) + (E(Y 2
2 )− E(Y2)]

2) + 2[E(Y1Y2)− E(Y1)E(Y2)]

= Var(Y1) + Var(Y2) + 2Cov(Y1, Y2)

If Y1 and Y2 are independent, the covariance is 0, so we get

Var(Y1 + Y2) = Var(Y1) + Var(Y2) + 2(0) = Var(Y1) + Var(Y2)

We can extend the first result to the case of a sum of more than two
random variables, but the result is cumbersome. In the second case,
however, the result extends easily:

Fact:

If Y1, Y2, . . . , Yn are independent random variables, then

Var(Y1 + Y2 + · · ·+ Yn) = Var(Y1) + Var(Y2) + · · ·+Var(Yn)

Congratulations, we are officially done with the probability part of this
course! Onto the statistics part! ,


	1. Joint Expectation (continued)
	2. Covariance and Correlation
	3. Magic Covariance Formula
	4. Independence

