
LECTURE: SAMPLING DISTRIBUTIONS (I)

Welcome to the magical world of Statistics! The main difference is
that, in probability, you know the distribution beforehand, whereas in
Statistics, you try to figure out what the distribution is

1. Introduction
Example 1:

Suppose you’re modeling the distribution of ice cream preferences
among 754, 224 people. Assume there are just 2 flavors (Chocolate
and Vanilla) and people prefer chocolate or vanilla, but not both.

We can model the population with a binomial distr. Binom(754224, p)
where p is the proportion of people who prefer chocolate. p is un-
known, and unless we accurately survey every single person, which is
logistically and financially unfeasible.

Main Idea: Instead of polling the entire population, poll a smaller
sample n = 1000 and find the proportion p̂ for that smaller sample.
Here “hat” indicates that it is an estimator for the true value p.

Main Question: How close is the estimate p̂ is to the true value p ?

2. Statistics
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Let’s now explore this in more detail.

STEP 1: Suppose we have a large population and are interested in
studying a particular feature of it.

For example, the population could be the one discussed above and we
are interested in the yes/no question “Do you prefer Chocolate over
Vanilla?” Or it could be the ball bearings produced by a factory (see
example below), and we are interested in their diameter.

STEP 2: The population feature can be characterized by a pmf p(y)
(discrete case, like the number of people who prefer Chocolate) or a
density function f(y) (continuous case, like the ball bearing diameters)

STEP 3: The pmf/density will have a certain parameter, like p above,
or the mean µ or variance σ2

STEP 4: Take a small sample from the population.

Let n be the sample size, and let the random variables Y1, . . . , Yn be the
samples we take from the population. In the example above, n = 1000
and Y1, · · · , Y1000 represent the answers of the 1000 people we surveyed.

STEP 5: Assume Y1, · · · , Yn are independent and are identically dis-
tributed (iid). In other words, the people surveyed don’t influence each
other.

STEP 6:

Definition:

A statistic is a function of our samples Y1, . . . , Yn
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Examples:

Statistic Definition

sample mean Y = 1
n

∑n
i=1 Yi

sample variance S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2

sample minimum Ymin = min(Y1, . . . , Yn)
sample maximum Ymax = max(Y1, . . . , Yn)
sample range R = Ymax − Ymin

Note: The n−1 in the denominator of the sample variance may seem
a bit mysterious, but we will see in a few classes why that makes sense.

Upshot: Since a statistic is a function of random variables, it is itself
a random variable, thus we can characterize its distribution using the
tools of probability.

In fact, let’s illustrate that with the sample mean!

Example 2:

Find E(Ȳ ) and Var(Ȳ ) where Ȳ = 1
n

∑n
i=1 Yi is the sample mean

E(Ȳ ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

µ =
1

n
(nµ) = µ

Thus the expected value of the sample mean is the population mean µ.

Using Var(aY ) = a2Var(Y ) and the independence of Yi

Var(Ȳ ) = Var

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

Var(Yi) =
1

n2

n∑
i=1

σ2 =
1

n2

(
nσ2
)
=

σ2

n
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Interpretation: The sample mean Y is a good approximation to the
true mean µ and this approximation gets better and better the more
people you survey. This makes sense, as we should get the exact mean
if we survey the entire population.

Note: In general, we don’t know anything about the distr. of Y ex-
cept in the following special case:

3. Normally Distributed Populations

Suppose we our population is normally distributed. Then the sample
mean is also normally distributed:

Fact:

Let Y1, . . . , Yn be iid with a normal distribution N(µ, σ2) then

Ȳ =
1

n

n∑
i=1

Yi

Has a normal distr. with mean E(Ȳ ) = µ and var Var(Ȳ ) = σ2

n

Why? To show the sample mean has a normal distr., we can use “mo-
ment generating functions,” which is beyond the scope of this course

The result about E(Ȳ ) = µ and Var(Ȳ ) = σ2

n follows from the above
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Upshot: Since the sample mean Ȳ is normally distributed with mean
µ and variance σ2

n

Z =
Ȳ − µ

σ√
n

Is a standard normal random variable.

Example 3:

A ball bearing machine produces ball bearings whose diameters
are normally distributed with mean µ mm and standard deviation
σ mm.

We unfortunately have lost the manual for the machine, so we
do not know the value of µ. We call the company to get more
information, but all they can tell us is that σ = 0.1.

(a) We take a sample of 16 ball bearings from the machine and
compute the sample mean Ȳ . Find the probability that Ȳ
is within 0.02 mm of the true mean µ.

Here Ȳ has a normal distr. with mean µ and variance σ2

n = (0.1)
2

16

Converting to a standard normal variable, we get:

P (|Ȳ − µ| ≤ 0.02) = P (−0.02 ≤ (Ȳ − µ) ≤ 0.02)

= P

(
−0.02

σ/
√
n
≤ Ȳ − µ

σ/
√
n
≤ 0.02

σ/
√
n

)
= P

(
−0.02

0.1/
√
16

≤ Z ≤ 0.02

0.1/
√
16

)
= P (−0.8 ≤ Z ≤ 0.8)

= F (0.8)− F (−0.8) = 0.7881− 0.2119 = 0.5762
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