LECTURE: CONVOLUTION

Today: Laplace transform and multiplication

1. Convolution

Video: Convolution Intuition

Demo: Convolution Demo
WARNING: In general, we have

$$
\mathcal{L}\{f(t) g(t)\} \neq \mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

Example 1:

Let $f(t)=2$ and $g(t)=3$

$$
\begin{gathered}
\mathcal{L}\{f(t) g(t)\}=\mathcal{L}\{2 \times 3\}=\mathcal{L}\{6\}=\frac{6}{s} \\
\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}=\mathcal{L}\{2\} \mathcal{L}\{3\}=\left(\frac{2}{s}\right)\left(\frac{3}{s}\right)=\frac{6}{s^{2}} \neq \frac{6}{s}
\end{gathered}
$$

However, this property is true if we replace multiplication by a new operation called convolution

Definition: (Convolution)

$$
(f \star g)(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Here τ is just a dummy variable that gets integrated over. It's really a function of t here

Mnemonic: $(t-\tau)+\tau=\tau+(t-\tau)=t \quad$ (the sum is $t)$
Note: Think of it as a kind of multiplication of f and g. In fact it does become multiplication if you think in terms of Laplace transforms:

Convolution Theorem:

$$
\mathcal{L}\{f \star g\}=\mathcal{L}\{f\} \mathcal{L}\{g\}
$$

Why? An optional proof is found in the Appendix below. It's based on writing $\mathcal{L}\{f\} \mathcal{L}\{g\}$ as a double integral and changing variables.

We can use this to find Laplace transforms:

Example 2:

$$
\text { Find } \mathcal{L}\{h(t)\} \text { where } h(t)=\int_{0}^{t} e^{-2(t-\tau)} \sin (\tau) d \tau
$$

Here $h(t)=e^{-2 t} \star \sin (t)$ so

$$
\mathcal{L}\{h(t)\}=\mathcal{L}\left\{e^{-2 t} \star \sin (t)\right\}=\mathcal{L}\left\{e^{-2 t}\right\} \mathcal{L}\{\sin (t)\}=\left(\frac{1}{s+2}\right)\left(\frac{1}{s^{2}+1}\right)
$$

Example 3:

Find a function whose Laplace transform is $\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$
Note: Write your answer as an integral
Trick: Notice $\frac{1}{s^{2}+1}=\mathcal{L}\{\sin (t)\}$ and $\frac{1}{s^{2}+4}=\mathcal{L}\left\{\frac{1}{2} \sin (2 t)\right\}$ and therefore

$$
\left(\frac{1}{s^{2}+1}\right)\left(\frac{1}{s^{2}+4}\right)=\mathcal{L}\{\sin (t)\} \mathcal{L}\left\{\frac{1}{2} \sin (2 t)\right\}=\mathcal{L}\left\{\sin (t) \star\left(\frac{1}{2} \sin (2 t)\right)\right\}
$$

Answer: $(\sin (t)) \star\left(\frac{1}{2} \sin (2 t)\right)=\int_{0}^{t} \sin (t-\tau)\left(\frac{1}{2} \sin (2 \tau)\right) d \tau$

2. Convolution and ODE

Convolution allows us to solve ODE where the right hand side isn't part of our Laplace transform table:

Example 4:

$$
\left\{\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+4 y & =\tan (t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}\right.
$$

STEP 1: Take Laplace transforms:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}-4 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=\mathcal{L}\{\tan (t)\} \\
&\left(s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)\right)-4(s \mathcal{L}\{y\}-y(0))+4 \mathcal{L}\{y\}=\mathcal{L}\{\tan (t)\} \\
&\left(s^{2}-4 s+4\right) \mathcal{L}\{y\}=\mathcal{L}\{\tan (t)\} \\
& \mathcal{L}\{y\}=\left(\frac{1}{s^{2}-4 s+4}\right) \mathcal{L}\{\tan (t)\}
\end{aligned}
$$

STEP 2: Write $\frac{1}{s^{2}-4 s+4}=\frac{1}{(s-2)^{2}}$ as a Laplace transform
This is a shifted version by 2 units of $\frac{1}{s^{2}}=\mathcal{L}\{t\}$ and so $\frac{1}{(s-2)^{2}}=\mathcal{L}\left\{e^{2 t} t\right\}$

$$
\mathcal{L}\{y\}=\mathcal{L}\left\{t e^{2 t}\right\} \mathcal{L}\{\tan (t)\}=\mathcal{L}\left\{\left(t e^{2 t}\right) \star(\tan (t))\right\}
$$

STEP 3: Solution

$$
y=\left(t e^{2 t}\right) \star(\tan (t))=\int_{0}^{t}(t-\tau) e^{2(t-\tau)} \tan (\tau) d \tau
$$

This is unfortunately the best we can do, unless one can evaluate the integral explicitly.

3. Integral Equations

Video: Integral Equations

In fact, we can go a step further and even solve integral equations!

Example 5:

Solve the following integral equation

$$
\phi(t)+\int_{0}^{t}(t-\tau) \phi(\tau) d \tau=\frac{8}{3} \sin (3 t)
$$

The unknown $\phi(t)$ is both under the equation and under the integral.
This is very important in applications: For example the Lotka-Volterra equations give us a better model of the bunnies vs foxes situation.

Notice this has the form $\phi+(t \star \phi)=\frac{8}{3} \sin (3 t)$

STEP 1: Take Laplace Transforms

$$
\begin{gathered}
\mathcal{L}\{\phi(t)\}+\mathcal{L}\{t \star \phi(t)\}=\mathcal{L}\left\{\frac{8}{3} \sin (3 t)\right\} \\
\mathcal{L}\{\phi(t)\}+\mathcal{L}\{t\} \mathcal{L}\{\phi(t)\}=\left(\frac{8}{3}\right)\left(\frac{3}{s^{2}+9}\right) \\
\mathcal{L}\{\phi(t)\}+\left(\frac{1}{s^{2}}\right) \mathcal{L}\{\phi(t)\}=\frac{8}{s^{2}+9} \\
\left(1+\frac{1}{s^{2}}\right) \mathcal{L}\{\phi(t)\}=\frac{8}{s^{2}+9} \\
\left(\frac{s^{2}+1}{s^{2}}\right) \mathcal{L}\{\phi(t)\}=\frac{8}{s^{2}+9} \\
\mathcal{L}\{\phi(t)\}=\left(\frac{s^{2}}{s^{2}+1}\right)\left(\frac{8}{s^{2}+9}\right) \\
\mathcal{L}\{\phi(t)\}=\frac{8 s^{2}}{\left(s^{2}+1\right)\left(s^{2}+9\right)}
\end{gathered}
$$

STEP 2: Partial Fractions

$$
\frac{8 s^{2}}{\left(s^{2}+1\right)\left(s^{2}+9\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+9}
$$

And eventually you find $A=0, B=-1, C=0, D=9$

STEP 3:

$$
\begin{gathered}
\mathcal{L}\{\phi(t)\}=\frac{-1}{s^{2}+1}+\frac{9}{s^{2}+9}=\mathcal{L}\{-\sin (t)+3 \sin (3 t)\} \\
\phi(t)=-\sin (t)+3 \sin (3 t)
\end{gathered}
$$

Video: Integro-Differential Equation

Example 6: (more practice)

Solve the following integral equation with $\phi(0)=1$

$$
\phi^{\prime}(t)-\frac{1}{2} \int_{0}^{t}(t-\tau)^{2} \phi(\tau) d \tau=-t
$$

Notice this is of the form $\phi^{\prime}-\frac{1}{2}\left(t^{2} \star \phi\right)=-t$
Take Laplace transforms

$$
\begin{aligned}
\mathcal{L}\left\{\phi^{\prime}\right\}-\frac{1}{2} \mathcal{L}\left\{t^{2} \star \phi\right\} & =\mathcal{L}\{-t\} \\
s \mathcal{L}\{\phi\}-\phi(0)-\frac{1}{2} \mathcal{L}\left\{t^{2}\right\} \mathcal{L}\{\phi\} & =-\frac{1}{s^{2}} \\
s \mathcal{L}\{\phi\}-1-\frac{1}{2}\left(\frac{2}{s^{3}}\right) \mathcal{L}\{\phi\} & =-\frac{1}{s^{2}} \\
\left(s-\frac{1}{s^{3}}\right) \mathcal{L}\{\phi\} & =1-\frac{1}{s^{2}} \\
\left(\frac{s^{4}-1}{s^{3}}\right) \mathcal{L}\{\phi\} & =\frac{s^{2}-1}{s^{2}} \\
\mathcal{L}\{\phi\} & =\left(\frac{s^{3}}{s^{4}-1}\right)\left(\frac{s^{2}-1}{s^{2}}\right) \\
\mathcal{L}\{\phi\} & =\frac{s\left(s^{2}-1\right)}{s^{4}-1}
\end{aligned}
$$

To factor out the denominator, notice $s^{4}-1=\left(s^{2}\right)^{2}-1^{2}=\left(s^{2}-1\right)\left(s^{2}+1\right)$

$$
\begin{gathered}
\mathcal{L}\{\phi\}=\frac{s\left(s^{2}-1\right)}{\left(s^{2}-1\right)\left(s^{2}+1\right)}=\frac{s}{s^{2}+1}=\mathcal{L}\{\cos (t)\} \\
\phi(t)=\cos (t)
\end{gathered}
$$

4. The Laplast One

Video: Laplace integral gone bananas
Finally, here is a cool application of convolution with integrals

Example 7:

$$
I=\int_{0}^{1} x^{3}(1-x)^{7} d x
$$

STEP 1: Here's a really cool trick: Let $f(t)=t^{3}$ and $g(t)=t^{7}$

$$
\text { Calculate } f \star g=\int_{0}^{t} \tau^{3}(t-\tau)^{7} d \tau
$$

(Notice $\tau+(t-\tau)=t$)
STEP 2: u-substitution
We want to change the endpoint t to 1 , so let $u=\frac{\tau}{t}$ then $u(0)=\frac{0}{t}=0$ and $u(t)=\frac{t}{t}=1$ and $\tau=t u$ and $d \tau=t d u$ and so

$$
\begin{aligned}
f \star g & =\int_{0}^{1}(t u)^{3}(t-t u)^{7} t d u \\
& =\int_{0}^{1}(t u)^{3}(t(1-u))^{7} t d u \\
& =t^{3+7+1} \underbrace{\int_{0}^{1} u^{3}(1-u)^{7} d u}_{I} \\
& =t^{11}(I)
\end{aligned}
$$

STEP 3: Take Laplace transforms on both sides:

$$
\begin{aligned}
\mathcal{L}\{f \star g\} & =\mathcal{L}\left\{t^{11}(I)\right\} \\
\mathcal{L}\{f\} \mathcal{L}\{g\} & =I \mathcal{L}\left\{t^{11}\right\} \\
\mathcal{L}\left\{t^{3}\right\} \mathcal{L}\left\{t^{7}\right\} & =I \mathcal{L}\left\{t^{11}\right\} \\
\left(\frac{3!}{s^{4}}\right)\left(\frac{7!}{s^{8}}\right) & =I\left(\frac{11!}{s^{21}}\right) \\
3!7! & =I(11!) \\
I & =\frac{3!7!}{11!}
\end{aligned}
$$

STEP 4: Conclusion

$$
I=\int_{0}^{1} x^{3}(1-x)^{7} d x=\frac{3!7!}{11!}=\frac{1}{1320}
$$

In general:

$$
\int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{m!n!}{(m+n+1)!}
$$

5. Appendix: Convolution Theorem Proof

Convolution Theorem:

$$
\mathcal{L}\{f \star g\}=\mathcal{L}\{f\} \mathcal{L}\{g\}
$$

Why?

STEP 1:

$$
\begin{aligned}
\mathcal{L}\{f\} \mathcal{L}\{g\} & =\left(\int_{0}^{\infty} f(t) e^{-s t} d t\right)\left(\int_{0}^{\infty} g(u) e^{-s u} d u\right) \\
& =\lim _{L \rightarrow \infty}\left(\int_{0}^{L} f(t) e^{-s t} d t\right)\left(\int_{0}^{L} g(u) e^{-s u} d u\right) \\
& =\lim _{L \rightarrow \infty} \int_{0}^{L}\left(\int_{0}^{L} f(t) e^{-s t} d t\right) g(u) e^{-s u} d u \\
& =\lim _{L \rightarrow \infty} \int_{0}^{L} \int_{0}^{L} f(t) e^{-s t} g(u) e^{-s u} d t d u \\
& =\lim _{L \rightarrow \infty} \iint_{R_{L}} e^{-s(t+u)} f(t) g(u) d u d t
\end{aligned}
$$

Where R_{L} is the square $0 \leq t \leq L$ and $0 \leq u \leq L$

STEP 2: Trick: Change the domain of integration
Note that in the limit as $L \rightarrow \infty$, the integral is the same as

$$
\lim _{L \rightarrow \infty} \iint_{R_{L}} e^{-s(t+u)} f(t) g(u) d u d t=\lim _{L \rightarrow \infty} \iint_{T_{L}} e^{-s(t+u)} f(t) g(u) d u d t
$$

Where T_{L} is the triangular region $0 \leq t \leq L$ and $0 \leq t+u \leq L$

This is because, in the limit, both regions equal to the first quadrant STEP 3: Change of Variables

$$
\left\{\begin{array} { l }
{ u = u } \\
{ v = u + t }
\end{array} \Rightarrow \left\{\begin{array}{l}
u=u \\
t=v-u
\end{array}\right.\right.
$$

This change of variables turns T_{L} into D_{L}

Where D_{L} is the triangular region $0 \leq v-u \leq L$ and $0 \leq u \leq L$

Jacobian:

$$
d u d t=\left|\frac{d u d t}{d u d v}\right| d u d v=\left|\begin{array}{ll}
\frac{\partial u}{\partial u} & \frac{\partial u}{\partial v} \\
\frac{\partial t}{\partial u} & \frac{\partial t}{\partial v}
\end{array}\right| d u d v=\left|\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right| d u d v=|1| d u d v=d u d v
$$

$$
\begin{aligned}
\iint_{T_{L}} e^{-s(t+u)} f(t) g(u) d u d t & =\iint_{D_{L}} e^{-s v} f(v-u) g(u) d u d v \\
& =\int_{0}^{L} \int_{0}^{v} e^{-s v} f(v-u) g(u) d u d v \\
& =\int_{0}^{L} e^{-s v}\left(\int_{0}^{v} f(v-u) g(u) d u\right) d v \\
& =\int_{0}^{L} e^{-s v}(f \star g)(v) d v
\end{aligned}
$$

STEP 4: Conclusion

Therefore, in the limit as $L \rightarrow \infty$, we get
$\mathcal{L}\{f\} \mathcal{L}\{g\}=\lim _{L \rightarrow \infty} \int_{0}^{L} e^{-s v}(f \star g)(v) d v=\int_{0}^{\infty} e^{-s v}(f \star g)(v) d v=\mathcal{L}\{f \star g\}$

