APMA 1650 - HOMEWORK 9

Problem 1: The reading on a voltmeter is uniformly distributed over the interval $[\theta, \theta + 1]$, where θ is the true voltage of the circuit. Using your voltmeter, you take *n* consecutive voltage readings Y_1, \ldots, Y_n from a single circuit.

- (a) Show that the sample mean \bar{Y} is a biased estimator for θ , and compute the bias of \bar{Y} .
- (b) Find a function of \overline{Y} which is an unbiased estimator of θ .
- (c) Find the MSE of \bar{Y} (the biased estimator) when \bar{Y} is used as an estimator of θ .

Problem 2: Let $X \sim$ Binom (n, p)

Consider the following estimator for p:

$$\hat{p}_1 = \frac{X+1}{n+2}$$

On a previous homework, we showed

Bias
$$(\hat{p}_1) = \frac{1-2p}{n+2}$$
 and MSE $(\hat{p}_1) = \frac{(1-2p)^2 + np(1-p)}{(n+2)^2}$

The standard, unbiased estimator for p is

$$\hat{p} = \frac{X}{n}$$

In class, we showed that $MSE(\hat{p}) = \frac{p(1-p)}{n}$

Find a value of p for which $MSE(\hat{p}_1) < MSE(\hat{p})$. This shows that a biased estimator can sometimes have lower MSE than an unbiased one.

Hint: Think "extreme" cases, like p = 0 or p = 1 or $p = \frac{1}{2}$

Problem 3: Let Y_1, Y_2, \ldots, Y_n be a random sample from a population with probability density function parameterized by θ given by

$$f_{\theta}(y) = \begin{cases} \theta y^{\theta - 1} & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

where $\theta > 0$ is the parameter of interest.

- (a) Show that the sample mean \overline{Y} is an unbiased estimator for $\frac{\theta}{\theta+1}$
- (b) Show that the sample mean \bar{Y} is a consistent estimator for $\frac{\theta}{\theta+1}$

Problem 4: Let Y_1, Y_2, \ldots, Y_n be a random sample from a population with probability density function parameterized by θ given by

$$f_{\theta}(y) = \begin{cases} (\theta+1)y^{\theta} & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

where $\theta > -1$ is the parameter of interest

- (a) Find an estimator for θ using the method of moments.
- (b) Find the maximum likelihood estimator (MLE) for θ . Compare this with your answer from (a)