LECTURE: SAMPLING DISTRIBUTIONS (II)

1. Normally Distributed Populations (CONTINUED)

Recall:

Let Y_{1}, \ldots, Y_{n} be iid then the sample mean is

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Note that \bar{Y} is a random variable. In general, the distribution of \bar{Y} is unknown, except for an important special case:

Recall:

If all the $Y_{i} \sim N\left(\mu, \sigma^{2}\right)$ then $\bar{Y} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$

Example 1: (continued)

A ball bearing machine produces ball bearings whose diameters are normally distributed with mean $\mu \mathrm{mm}$ and standard deviation $\sigma=0.1 \mathrm{~mm}$
(b) How many ball bearings should we sample if we want the sample mean to be within 0.02 mm of μ with probability 0.95 ?

Since $\bar{Y} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ by the 68-95-99 rule, we want \bar{Y} to lie within 2 standard deviations of the population mean μ

Hence we want the standard deviation of \bar{Y} to be $\frac{0.02}{2}=0.01$
But since the standard deviation of \bar{Y} is $\frac{\sigma}{\sqrt{n}}=\frac{0.1}{\sqrt{n}}$ we get

$$
\begin{aligned}
\frac{0.1}{\sqrt{n}} & =0.01 \\
\sqrt{n} & =\frac{0.1}{0.01}=10 \\
n & =100
\end{aligned}
$$

(c) How many ball bearings should we sample if we wish the sample mean to be within 0.02 mm of μ with probability 0.98 ?

Here we actually have to do the math. We want:

$$
P(|\bar{Y}-\mu| \leq 0.02)=P(-0.02 \leq(\bar{Y}-\mu) \leq 0.02)=0.98
$$

Converting to the standard normal, we get

$$
\begin{aligned}
0.98 & =P\left(\frac{-0.02}{\sigma / \sqrt{n}} \leq \frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \leq \frac{0.02}{\sigma / \sqrt{n}}\right) \\
& =P\left(\frac{-0.02}{0.1 / \sqrt{n}} \leq Z \leq \frac{0.02}{0.1 / \sqrt{n}}\right) \\
& =P(-0.2 \sqrt{n} \leq Z \leq 0.2 \sqrt{n})=0.98
\end{aligned}
$$

By complements and symmetry, we need

$$
P(Z \leq-0.2 \sqrt{n})=0.01
$$

Looking at the Z-table, we find $P(Z \leq-2.32)=0.102$ and so

$$
\begin{aligned}
-0.2 \sqrt{n} & =-2.32 \\
\sqrt{n} & =11.6 \\
n & =134.56
\end{aligned}
$$

Answer: $n=135$

In other words, we need a sample size of 135 or more to have 98% confidence that our sample mean is within 0.02 of the true population mean.

Note: Ok to choose $P(Z \leq-2.33)=0.0099$ instead.

2. Chi-Square Distribution

We will now briefly discuss two other useful distributions, the chisquare and t distribution. Computations with these distributions is done via tables, and not by using densities.

The chi-square distribution is the distribution of the sum of squares of normal random variables. This is useful to make inferences about the variance of a population, since variance involves squares of random variables.

Definition:

Let Y_{1}, \ldots, Y_{n} be iid $N\left(\mu, \sigma^{2}\right)$
Then $Z_{i}=\left(Y_{i}-\mu\right) / \sigma$ are iid $N(0,1)$ and

$$
\sum_{i=1}^{n} Z_{i}^{2}=\sum_{i=1}^{n}\left(\frac{Y_{i}-\mu}{\sigma}\right)^{2}
$$

Has a chi-square distribution with n degrees of freedom (df)
To use the chi-square distribution, we use a chi-square table, which is provided on the course website. Here is how to use it:

Example 2:

Suppose Y has a chi-square distribution with 10 df
(a) Find y such that $P(Y>y)=0.995$

Look at the 10 df row and the $\chi_{0.995}^{2}$ column. The entry is precisely y such that $P(Y>y)=0.995$

Therefore $P(Y>2.156)=0.995$ and $y=2.156$
(b) Find y such that $P(Y \leq y)=0.9$

By the complement rule, we want $P(Y>y)=1-0.9=0.1$
Looking at the $\chi_{0.1}^{2}$ column, we have $P(Y>15.987)=0.1$
Therefore $y=15.987$

Note: The columns in the table are extreme probabilities, i.e. very high or very low. Those are the probabilities we are usually interested in. For other values, you need to use a statistical package such as R.

Example 3:

Let Z_{1}, \ldots, Z_{6} be iid $N(0,1)$. Find a value a such that

$$
P\left(\sum_{i=1}^{6} Z_{i}^{2} \leq a\right)=0.95
$$

$$
\text { We want } P\left(\sum_{i=1}^{6} Z_{i}^{2}>a\right)=1-0.95=0.05
$$

Since $\sum_{i=1}^{6} Z_{i}^{2}$ has a chi-square distribution with 6 df , looking at the chi-square table in the 6 df row and $\chi_{.050}^{2}$ column, we get $a=12.592$

Question: How do we use this practically?

Recall:

The sample variance is

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Then we can say the following about the distribution of S^{2} :

Fact:

Let Y_{1}, \ldots, Y_{n} be iid $N\left(\mu, \sigma^{2}\right)$ then

$$
\left(\frac{n-1}{\sigma^{2}}\right) S^{2}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Has a chi-square distribution with $n-1$ deg of freedom
Note: The $n-1$ is not a typo. This is because \bar{Y} depends on Y_{1}, \cdots, Y_{n} so the sum above really just depends on $n-1$ independent random variables and not n

