
LECTURE: CENTRAL LIMIT THEOREM AND POINT
ESTIMATORS (I)

1. Central Limit Theorem
Recall:

If Y1, · · · , Yn are iid then the sample mean is

Y =
1

n

n∑
i=1

Yi

Usually the distribution of Y is unknown

The cool thing is that (a rescaled version of) Y is still approximately
normal, provided n is large:

Central Limit Theorem:

Let Y1, . . . , Yn be iid with E(Yi) = µ and Var(Yi) = σ2

Let Zn =
Ȳ − µ

σ/
√
n

Then, as n → ∞ the distribution of Zn converges to the standard
normal distribution

Note: Mathematically, this means that for all z

lim
n→∞

P (Zn ≤ z) = P (Z ≤ z) where Z ∼ N(0, 1)
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Practically, this means that for a large sample size Ȳ is roughlyN
(
µ, σ

2

n

)
Usually n ≥ 30 is enough

Example 1:

Suppose SAT scores usually have a mean of 60 and variance 64

A new version of the test is given to 100 students, and the mean
score of those 100 students is 58.

How likely is it that there is something wrong with that new
version?

We’ll calculate P (Ȳ ≤ 58)

By the Central Limit Theorem, since our sample size is large (≥ 30),
Y is approximately normal with mean µ = 60 and variance

σ2

n
=

64

100
⇒ σ√

n
=

8

10
= 0.8

Converting to the standard normal random variable:

P (Ȳ ≤ 58) =P

(
Ȳ − 60

0.8
≤ 58− 60

0.8

)
≈P

(
Z ≤ 58− 60

0.8

)
(Central Limit Theorem)

=P (Z ≤ −2.5) = F (−2.5) = 0.0062

This probability is so small that it is unlikely that it was drawn from
a population with mean 60 and variance 64. Thus it is highly likely
that there is something wrong with the test.
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Example 2:

Service times for customers in a retail store are independent
random variables with mean 1.5 minutes and variance 1.0
minutes.

Approximately what is the probability that 100 customers can be
served in less than 2 hours?

Let Yi be the service time for the ith customer, then

P

(
100∑
i=1

Yi ≤ 120

)
= P

(
1

100

100∑
i=1

Yi ≤
120

100

)
= P (Ȳ ≤ 1.20)

Since n is large, by the Central Limit Theorem, Ȳ is approximately
normally with mean µ = 1.5 and variance σ2

n = 1
100 ⇒

σ√
n
= 0.1

Thus, converting to the standard normal random variable, we have:

P (Ȳ ≤ 1.20) ≈ P

(
Z ≤ 1.20− 1.5

0.1

)
= P

(
Z ≤ −0.30

0.1

)
= P (Z ≤ −3.0) = F (−3) = 0.0013

This probability is so small that it is virtually impossible to serve 100
customers in less than 2 hours.

Note: What makes this so nice is that we can use this even though the
distributions of the service times is unknown. If we had to model this
realistically, we might choose an exponential distribution, although we
would have to change either the mean or the variance in that case.
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2. Estimators

The whole point of statistics is to make inferences about a population
based on data from a small sample of that population.

So far we have used Y to make a guess for the population mean µ and
S2 to make a guess about the variance σ2

But there might be other parameters the distributions depend on. In
the Chocolate/Vanilla ice cream scenario for example, a natural pa-
rameter is p, the proportion of the population who prefers Chocolate.

This is why it’s useful to generalize the approach that we have so far.

Suppose we are studying a population whose distribution has a pa-
rameter which we will denote θ. This could be the population mean,
population variance, proportion of people who prefer Chocolate etc.

We will take n iid samples Y1, . . . , Yn from our population.

Definition:

An estimator θ̂ is a function of Y1, · · · , Yn that gives us informa-
tion about θ

(1) A point estimator produces a single number that is close
to the parameter of interest

(2) An interval estimate produces an interval (often called
a confidence interval) in which we believe our parameter
of interest lies.
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Note: We generally use hats for estimators. So the “hat” over the θ
indicates that it is an estimator θ

3. Point Estimators

We have already met one point estimator, the sample mean Ȳ which
is an estimator for the population mean µ

Example 3:

Suppose you are polling n people out of a population and ask
them if they prefer Chocolate over Vanilla.

Here the parameter of interest is p, the proportion of people who
prefer chocolate

Let Y be the number of people in our sample who prefer
Chocolate.

Then the sample proportion p̂ = Y/n is an estimator for the
population proportion p

What does it mean for an estimator to be good? Here we need some
quantitative tools that measures “goodness”

Let θ̂ be an estimator for θ, notice θ̂ is a random variable.

In order for θ̂ to be an approximation for θ we should at least have
E(θ̂) = θ.
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Definition:

θ̂ is unbiased if E(θ̂) = θ else θ̂ is biased

Think about it! What if θ = 10 but on average, your estimator θ̂ gives
you 30? There would be something iffy with that estimate!

Definition:

The bias of θ̂ is given by Bias(θ̂) = E(θ̂)− θ

Let’s look at the estimators we have seen so far:

Example 4:

(a) Is the sample mean Ȳ biased?

The sample mean θ̂ = Ȳ is an estimator for the population mean θ = µ
We have previously shown that E(Ȳ ) = µ, thus the sample mean is an
unbiased estimator for the population mean.

(b) Is the sample proportion biased?

What about the sample proportion? Suppose we poll n people, and
let Y be the number of people in our sample prefer Chocolate. Here
Y ∼ Binom (n, p)

For our estimator p̂ = Y/n,

E(p̂) = E

(
Y

n

)
=

1

n
E(Y ) =

np

n
= p

Since E(p̂) = p, this estimator is unbiased as well.
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