
LECTURE: POINT ESTIMATORS (II)

1. Mean-Squared Error

Recall:

Let θ̂ be an estimator for θ, then

Bias(θ̂) = E(θ̂)− θ

This is one measure of the “goodness” of θ̂. A perhaps better one is
the Mean Square Error:

Definition:

MSE(θ̂) = E[(θ̂ − θ)2]

This is the average square distance from θ̂ to θ

Magic MSE Formula:

MSE(θ̂) = [Bias(θ̂)]2 +Var(θ̂)

This is because:
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MSE(θ̂) = E[(θ̂ − θ)2]

= E[(θ̂−E(θ̂)) + (E(θ̂)− θ)]2

= E[(θ̂ − E(θ̂))2] + 2E[(θ̂ − E(θ̂))(E(θ̂)− θ)︸ ︷︷ ︸
constant

] + E[(E(θ̂)− θ)2︸ ︷︷ ︸
constant

]

= Var(θ̂) + 2(E(θ̂)− θ)E[(θ̂ − E(θ̂))] + (E(θ̂)− θ)2

= Var(θ̂) + 2(E(θ̂)− θ)
(
����
E(θ̂)−����

E(θ̂)
)
+ [Bias(θ̂)]2

= Var(θ̂) + [Bias(θ̂)]2

Low bias is a good quality for an estimator, but ideally we would also
like to have low variance because we want the θ̂ to be close to θ

In general, there is a trade-off between bias and variance. For a given
MSE, if we wish θ̂ to have lower bias, then we must accept a higher
variance, and vice-versa.

Example 1:

(a) Find the MSE of the sample mean Ȳ

Since Bias
(
Ȳ
)
= 0 by the Magic MSE formula, MSE

(
Ȳ
)
= Var

(
Ȳ
)

We’ve also shown that Var(Ȳ ) = σ2

n hence MSE(Ȳ ) = σ2

n

Note: MSE(Ȳ ) goes to 0 as n → ∞. This makes intuitive sense that
a larger sample provides a better estimator for the population mean.

(b) Find the MSE of the sample proportion p̂ = Y
n
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Recall Y ∼ Binomial(n, p)

Once again Bias (p̂) = 0 hence MSE (p̂) = Var (p̂)

Since the variance of a binomial random variable is np(1− p), we get

MSE(p̂) = Var(p̂) = Var

(
Y

n

)
=

1

n2
Var(Y ) =

np(1− p)

n2
=

p(1− p)

n

2. Differences

Sometimes we’re in the difference between two populations

Example 2:

Who gets more sleep: First-years or Seniors?

In this case, the parameter of interest is the difference in the mean
amount of sleep between first-years and seniors.

Let µ1 and σ2
1 be the mean and var of the amount of sleep of first-years

Let µ2 and σ2
2 be the mean and var of the amount of sleep of seniors

Then our parameter of interest is p = µ1 − µ2

An estimator for p is p̂ = Ȳ1 − Ȳ2

Where Ȳ1 is the sample mean of n1 first-year students and Ȳ2 is the
sample mean of n2 seniors.

By taking expected values, we can show that Ȳ1 − Ȳ2 is unbiased.
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Moreover, by independence and Var (aX + b) = a2Var (aX) we get

Var(Ȳ1 − Ȳ2) = Var(Ȳ1) + Var(−Ȳ2) = Var(Ȳ1) + Var(Ȳ2) =
σ2
1

n1
+

σ2
2

n2

Example 3:

Suppose we are interested the preference for Chocolate Ice Cream
in hot vs cold areas in the US

Here “hot” means living in a city whose average temperature is ≥ 80F

Let p1 is the proportion of Chocolate supporters in hot areas

Let p2 is the proportion of Chocolate supporters in cold areas

Then the parameter of interest is p = p1 − p2, and an estimator of p is

p̂ =
Y1

n1
− Y2

n2

Where we survey n1 people in a hot area and n2 people in a cold area.

The expected value of p̂ is p1 − p2, so this estimator is unbiased, and

Var(p̂1−p̂2) = Var(p̂1)+Var(−p̂2) = Var(p̂1)+Var(p̂2) =
p1(1− p1)

n1
+
p2(1− p2)

n2

Summary: We summarize these common estimators for population
mean and proportion in the following table:
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Parameter of
Interest

Sample
Size

Estimator
Expected
Value

Variance

µ n Ȳ µ σ2

n

p n p̂ = Y
n p p(1−p)

n

µ1 − µ2 n1 and n2 Ȳ1 − Ȳ2 µ1 − µ2
σ2
1

n1
+ σ2

2

n2

p1 − p2 n1 and n2 p̂1 − p̂2 p1 − p2
p1(1−p1)

n1
+ p2(1−p2)

n2

Note: The standard deviation of an estimator is sometimes called the
standard error

3. Sample Variance
Recall: Sample Variance

S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2

Question: Why the n− 1?

In fact, let S̄ be the same definition but with n

Definition: Sample Variance at Home

S̄2 =
1

n

n∑
i=1

(Yi − Ȳ )2

We will now show that S̄2 is biased whereas S2 is unbiased! This ex-
plains why we use the definition with n− 1
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Claim:

S̄2 is biased

STEP 1: Find a nice formula for
∑n

i=1(Yi − Ȳ )2

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Y 2
i − 2YiȲ + Ȳ 2)

=
n∑

i=1

Y 2
i − 2Ȳ

n∑
i=1

Yi + n
(
Ȳ 2
)

(Ȳ is constant )

=
n∑

i=1

Y 2
i −2nȲ 2 + nȲ 2 ( def of Ȳ )

=

(
n∑

i=1

Y 2
i

)
− nȲ 2

STEP 2: Take expected values:

E

[
n∑

i=1

(Yi − Ȳ )2

]
= E

(
n∑

i=1

Y 2
i

)
−nE(Ȳ 2) =

(
n∑

i=1

E(Y 2
i )

)
−nE(Ȳ 2)

STEP 3: By the Magic Variance formula

E(Y 2
i ) = Var(Yi) + [E(Yi)]

2 = σ2 + µ2

Similarly E(Ȳ 2) = Var(Ȳ ) + [E(Ȳ )]2 =
σ2

n
+ µ2

STEP 4: We then plug this into STEP 2

E

[
n∑

i=1

(Yi − Ȳ )2

]
=

(
n∑

i=1

(σ2 + µ2)

)
− n

(
σ2

n
+ µ2

)
= nσ2 +�

��nµ2 − σ2 −�
��nµ2

=(n− 1)σ2
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STEP 5: Grand Finale

E(S̄2) = E

[
1

n

n∑
i=1

(Yi − Ȳ )2

]
=

1

n
E

[
n∑

i=1

(Yi − Ȳ )2

]
=

1

n
(n−1)σ2 =

(
n− 1

n

)
σ2

Since E(S̄2) ̸= σ2, we get that S̄2 is biased □

Question: How to fix this?

Use n− 1 instead of n to get S2

Claim:

S2 is unbiased

STEP 1: On the one hand, by our calculation above, we have

E

[(
n

n− 1

)
S̄2

]
=

(
n

n− 1

)
E(S̄2) =

(
n

n− 1

)(
n− 1

n

)
σ2 = σ2

So
(

n
n−1

)
S̄2 is unbiased

STEP 2: On the other hand, this is precisely S2 because(
n

n− 1

)
S̄2 =

n

n− 1

(
1

n

n∑
i=1

(Yi − Ȳ )2

)
=

1

n− 1

n∑
i=1

(Yi − Ȳ )2 = S2

So S2 is unbiased □
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