LECTURE: CONFIDENCE INTERVALS (I)

1. Confidence Intervals

Suppose that we're trying to estimate a parameter θ and let Y_{1}, \ldots, Y_{n} be iid samples from our population.

Definition:

A confidence interval uses Y_{1}, \ldots, Y_{n} to get an interval $[\hat{L}, \hat{U}]$
L and U means lower bound and upper bound, and we use hats to indicate estimators.

Ideally, we would like our interval to have the following properties:
(1) It should contain θ
(2) It should be relatively small
(3) We should be able to calculate the the probability that θ is in our interval

That probability is called the confidence coefficient

Definition:

The confidence coefficient for $[\hat{L}, \hat{U}]$ is the number $1-\alpha$ with

$$
P(\hat{L} \leq \theta \leq \hat{U})=1-\alpha
$$

Note: The reason we use $1-\alpha$ instead of α will be clear once we discuss hypothesis testing. Essentially, α will be the probability of getting a false positive result

2. Confidence Intervals for Large Sample Sizes

In this section, suppose our sample size is large.
For example, for the sample mean \bar{Y} we take $n \geq 30$
Let θ be our parameter and $\hat{\theta}$ be an (unbiased) estimator.

Goal:

Construct a confidence int $[\hat{L}, \hat{U}]$ for $\hat{\theta}$ with confidence coeff $1-\alpha$
Upshot: Since the sample size is large, the Central Limit Theorem says that $\hat{\theta}$ is normally distributed, so it's enough to convert to the standard normal variable Z

STEP 1: Since $\hat{\theta}$ is unbiased by assumption, we have $E(\hat{\theta})=\theta$
Let $\hat{\sigma}$ be the standard deviation of $\hat{\theta}$. Then:

$$
Z=\frac{\hat{\theta}-\theta}{\hat{\sigma}}
$$

is (approximately) a standard normal random variable.
STEP 2: Converting to Z, our question is equivalent to finding numbers $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ such that

$$
P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=(1-\alpha)
$$

This is done using a Z-table
Example: If $(1-\alpha)=0.95$, then $\alpha / 2=0.025$. Consulting the Z table, we find that $-z_{\alpha / 2}=-1.96$. By symmetry of the standard normal distribution about its mean of $0, z_{\alpha / 2}=1.96$.

STEP 3: To find $[\hat{L}, \hat{U}]$ just solve for θ

$$
\begin{gathered}
P\left(-z_{\alpha / 2} \leq \frac{\hat{\theta}-\theta}{\hat{\sigma}} \leq z_{\alpha / 2}\right)=1-\alpha \\
P\left(-\hat{\theta}-z_{\alpha / 2} \hat{\sigma} \leq-\theta \leq-\hat{\theta}+z_{\alpha / 2} \hat{\sigma}\right)=1-\alpha \\
P\left(\hat{\theta}-z_{\alpha / 2} \hat{\sigma} \leq \theta \leq \hat{\theta}+z_{\alpha / 2} \hat{\sigma}\right)=1-\alpha
\end{gathered}
$$

STEP 4: Answer:

Fact:

Assuming n is large, the $(1-\alpha)$ confidence interval for θ is:

$$
[\hat{L}, \hat{U}]=\left[\hat{\theta}-z_{\alpha / 2} \hat{\sigma}, \hat{\theta}+z_{\alpha / 2} \hat{\sigma}\right]
$$

Note: If you also know σ then you can use $\hat{\sigma}=\frac{\sigma}{\sqrt{n}}$ to get

$$
[\hat{L}, \hat{U}]=\left[\hat{\theta}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right), \hat{\theta}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)\right]
$$

3. Examples

Example 1:

A ball bearing machine produces ball bearings whose diameters are normally distributed with mean $\mu \mathrm{mm}$ and standard deviation $\sigma=0.1 \mathrm{~mm}$.

To do this, we take $n=9$ ball bearings and use $\bar{Y}=10 \mathrm{~mm}$ as our estimator for μ

What is the 90% confidence interval for μ ?
This does not require a large sample size because we know Y_{i} are nor$\mathrm{mal} \Rightarrow \bar{Y}$ is also normal

STEP 1: Since we know σ we use

$$
\hat{\sigma}=\frac{\sigma}{\sqrt{n}}=\frac{0.1}{\sqrt{9}}=\frac{0.1}{3}=0.0333
$$

STEP 2: Z-table

$$
1-\alpha=0.9 \Rightarrow \alpha=0.1 \Rightarrow \frac{\alpha}{2}=0.05
$$

Looking at the Z table, we will choose $z_{\alpha / 2}=1.65$ which gives a probability of 0.0495 (ok to choose a probability of 0.505 instead)

STEP 3: Thus our 90% confidence interval for μ is given by:

$$
\begin{aligned}
{[\hat{L}, \hat{U}] } & =\left[\bar{Y}-z_{\alpha / 2} \hat{\sigma}, \bar{Y}+z_{\alpha / 2} \hat{\sigma}\right] \\
& =[\bar{Y}-(1.65)(0.0333), \bar{Y}+(1.65)(0.0333)] \\
& =[10-(1.65)(0.0333), 10+(1.65)(0.0333)] \\
& =[9.945,10.055]
\end{aligned}
$$

Although we cannot say for certain that μ falls within this range, we can say that the probability that it does is 0.90 .

Note: In this example, we knew what σ was. If we don't know what σ is, then we would use the sample standard deviation S

Example 2:

The shopping times of $n=64$ randomly selected customers at a local supermarket were recorded.

The sample mean and sample variance of the 64 shoppers were $\bar{Y}=33$ minutes and $S^{2}=256$ minutes, respectively.

Find a 98% confidence interval for μ

The parameter of interest is μ and our estimator is \bar{Y}
Since the sample is large ($n \geq 30$), by the Central Limit Theorem, we can assume that \bar{Y} is normally distributed.

STEP 1: We do not know σ, we will use the sample variance S^{2} hence for $\hat{\sigma}$ we use

$$
\hat{\sigma}=\frac{S}{\sqrt{n}}=\frac{\sqrt{256}}{\sqrt{64}}=\frac{16}{8}=2
$$

STEP 2: To find $z_{\alpha / 2}$, we look at our Z table

$$
(1-\alpha)=0.98 \Rightarrow \alpha=0.02 \Rightarrow \frac{\alpha}{2}=0.01
$$

Looking at our Z table, the closest probability we have to 0.01 is 0.0099 which gives $z_{\alpha / 2}=2.33$

STEP 3: Therefore our 98% confidence interval is

$$
\begin{aligned}
{[\hat{L}, \hat{U}] } & =\left[\bar{Y}-z_{\alpha / 2} \hat{\sigma}, \bar{Y}+z_{\alpha / 2} \hat{\sigma}\right] \\
& =[33-(2.33)(2), 33+(2.33)(2)] \\
& =[28.34,37.66]
\end{aligned}
$$

