LECTURE: MIDTERM 2 - REVIEW

1. Covariance

Example 1:

Let X and Y be a pair of random variables which take on values $(1,0),(0,1),(-1,0)$ and $(0,-1)$ each with probability $1 / 4$ Show that $\operatorname{Cov}(X, Y)=0$ but X and Y are not independent

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

STEP 1: Let $p(x, y)$ be the joint pmf of (X, Y) then

$$
\begin{aligned}
E[X Y] & =\sum_{(x, y)} x y p(x, y) \\
& =(1)(0) p(1,0)+(0)(1) p(0,1)+(-1)(0) p(-1,0)+(0)(-1) p(0,-1) \\
& =0
\end{aligned}
$$

STEP 2: To calculate $E(X)$ calculate the marginal $p_{X}(x)$

Notice X takes on values $-1,0,1$

$$
\begin{gathered}
p_{X}(-1)=\sum_{y} p(-1, y)=p(-1,0)=\frac{1}{4} \\
p_{X}(0)=\sum_{y} p(0, y)=p(0,1)+p(0,-1)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
p_{X}(1)=\sum_{y} p(1, y)=p(1,0)=\frac{1}{4} \\
E[X]=\sum_{x} x p_{X}(x)=-1 p_{X}(-1)+0 p_{X}(0)+1 p_{X}(1)=-\frac{1}{4}+0+\frac{1}{4}=0
\end{gathered}
$$

STEP 3: To calculate $E(Y)$ calculate the marginal p_{Y}
Notice Y takes on values $-1,0,1$

$$
\begin{gathered}
p_{Y}(-1)=\sum_{x} p(x,-1)=p(0,-1)=\frac{1}{4} \\
p_{Y}(0)=\sum_{x} p(x, 0)=p(-1,0)+p(1,0)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
p_{Y}(1)=\sum_{x} p(x, 1)=p(0,1)=\frac{1}{4} \\
E[Y]=\sum_{y} y p_{Y}(y)=-1 p_{Y}(-1)+0 p_{Y}(0)+1 p_{Y}(1)=-\frac{1}{4}+0+\frac{1}{4}=0
\end{gathered}
$$

STEP 4: Hence

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0-0=0
$$

STEP 5: X and Y are not independent because for example

$$
p(0,1)=\frac{1}{4} \neq p_{X}(0) p_{Y}(1)=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}
$$

2. Conditional Density

Example 2:

A stick of length 1 is broken in two places.
The first break point is chosen uniformly at random along the length of the stick from $[0,1]$

The second break point is chosen uniformly at random from 0 to the first break point.
(a) Find the joint pdf of the two break points.
(b) Find the expectation of the product of the two break points.
(a) STEP 1: Let X be the random variable of the first point and Y the random variable of the second.

Intuitively we want to use
Conditional $=\frac{\text { Joint }}{\text { Marginal }} \Rightarrow$ Joint $=$ Conditional \times marginal
Then from above we have

$$
f(x, y)=f(y \mid x) f_{X}(x)
$$

STEP 2: By assumption
$f_{X}(x)$ is uniform over the interval $[0,1]$ so $f_{X}(x)=\frac{1}{1-0}=1$
$f(y \mid x)$ is uniform over the interval $[0, x]$ so $f(y \mid x)=\frac{1}{x-0}=\frac{1}{x}$

$$
\text { Hence } f(x, y)=f_{X}(x) f(y \mid x)=1\left(\frac{1}{x}\right)=\frac{1}{x}
$$

Warning: Don't forget about the bounds! Since the second break point is before the first, we have $y \leq x$ and so

$$
f(x, y)=\frac{1}{x} \text { where } 0 \leq y \leq x \leq 1
$$

(b)

$$
E[X Y]=\int_{0}^{1} \int_{0}^{x} x y f(x, y) d y d x=\int_{0}^{1} \int_{0}^{x} x y\left(\frac{1}{x}\right) d y d x=\frac{1}{2} \int_{0}^{1} x^{2} d x=\frac{1}{6}
$$

3. Bias and MSE

Example 3:

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from Unif $[0, L]$
Let $Y_{\max }=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ whose density is:

$$
f(y)= \begin{cases}\frac{n}{L^{n}} y^{n-1} & 0<y<L \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the bias of $Y_{\max }$ as an estimator for L
(b) Give an unbiased estimator for \hat{L} in terms of $Y_{\max }$
(a)

$$
\begin{aligned}
E\left(Y_{\max }\right) & =\int_{0}^{L} y f(y) d y=\int_{0}^{L} y\left(\frac{n}{L^{n}} y^{n-1}\right) d y=\int_{0}^{L} \frac{n}{L^{n}} y^{n} d y \\
& =\left[\frac{n}{L^{n}}\left(\frac{y^{n+1}}{n+1}\right)\right]_{y=0}^{y=L}=\left(\frac{n}{L^{n}}\right) \frac{L^{n+1}}{n+1}=\left(\frac{n}{n+1}\right) L
\end{aligned}
$$

$$
\operatorname{Bias}\left(Y_{\max }\right)=E\left(Y_{\max }\right)-L=\left(\frac{n}{n+1}\right) L-L
$$

(b) To convert this into an unbiased estimator, just use

$$
\hat{L}=\left(\frac{n+1}{n}\right) Y_{\max }
$$

$$
\begin{aligned}
\operatorname{Bias}(\hat{L}) & =E(\hat{L})-L \\
& =E\left(\left(\frac{n+1}{n}\right) Y_{\max }\right)-L \\
& =\left(\frac{n+1}{n}\right) E\left(Y_{\max }\right)-L \\
& =\left(\frac{n+1}{n}\right)\left(\frac{n}{n+1}\right) L-L=0 \checkmark
\end{aligned}
$$

4. INEQUALITIES

Example 4:

The average height of a raccoon is 10 inches.
(a) Given an upper bound on the probability that a given raccoon is at least 15 inches tall.
(b) The standard deviation of the height distribution is 2 inches. Find a lower bound on the probability that a raccoon is between 5 and 15 inches tall.
(c) Repeat (b), this time assuming the distribution is normal
(a) Let Y be the height of the raccoon.

Since we don't know the distribution of Y and we know $E(Y)=$ 10, we use Markov, which says

$$
P(Y \geq 15) \leq \frac{E(Y)}{15}=\frac{10}{15}=\frac{2}{3}
$$

(b) This time we also know $\sigma=2$ and so we use Chebyshev:

$$
P(|Y-E(Y)| \geq a) \leq \frac{\operatorname{Var}(Y)}{a^{2}} \Rightarrow P(|Y-10| \geq a) \leq \frac{4}{a^{2}}
$$

In this case we want

$$
5<Y<15 \Rightarrow-5 \leq Y-10<5 \Rightarrow|Y-10|<5
$$

And so we choose $a=5$ to get

$$
P(|Y-10| \geq 5) \leq \frac{4}{5^{2}}=\frac{4}{25}
$$

Hence, by the complement rule,

$$
P(|Y-10|<5) \geq 1-\frac{4}{25}=\frac{21}{25}
$$

(c) This time we know $Y \sim N\left(\mu, \sigma^{2}\right)$ where $\mu=10$ and $\sigma=2$

So converting to the standard normal variable, we get

$$
\begin{aligned}
P(5 \leq Y \leq 15) & =P\left(\frac{5-10}{2} \leq \frac{Y-10}{2} \leq \frac{15-10}{2}\right) \\
& =P(-2.5 \leq Z \leq 2.5) \\
& =F(2.5)-F(-2.5) \\
& =.9938-0.0062=0.9876
\end{aligned}
$$

Example 5:

Let X be a random variable which takes on values
-1 and 1 each with probability $1 / 2$
Show that in this case, equality holds in Chebyshev's inequality (with $a=1$)

STEP 1: In this case we need to show
$P(|X-E(X)| \geq 1)=\frac{\operatorname{Var}(X)}{1^{2}} \Rightarrow P(|X-E(X)| \geq 1)=\operatorname{Var}(X)$

STEP 2:

$$
\begin{gathered}
E(X)=(-1) P(X=-1)+(1) P(X=1)=-\frac{1}{2}+\frac{1}{2}=0 \\
E\left(X^{2}\right)=(-1)^{2} P(X=-1)+(1)^{2} P(X=1)=\frac{1}{2}+\frac{1}{2}=1
\end{gathered}
$$

$$
\operatorname{Var}\left(X^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}=1-0=1
$$

STEP 3: Hence we need to show that

$$
P(|X-0| \geq 1)=1 \Rightarrow P(|X|=1)=1
$$

But this is true because $|X|$ is always 1

5. Confidence Intervals

Example 6:

A random sample of 120 students from a large university yields mean GPA 2.71 with sample standard deviation 0.51 .

Construct a 90% confidence interval for the mean GPA of all students at the university.

We know that $\bar{Y}=2.71$ and $S=0.51$
STEP 1: Since the population is large and we don't know σ, we use the standard normal distribution, along with

$$
\hat{\sigma}=\frac{S}{\sqrt{n}}=\frac{0.51}{\sqrt{120}}
$$

STEP 2: Now $1-\alpha=0.9 \Rightarrow \alpha=0.1 \Rightarrow \frac{\alpha}{2}=0.05$
Moreover from the $Z-$ table, we get $z_{0.05}=1.645$
STEP 3: Therefore our 90% confidence interval for μ is

$$
\begin{aligned}
{[\hat{L}, \hat{U}] } & =\left[\bar{Y}-z_{\alpha / 2}\left(\frac{S}{\sqrt{n}}\right), \bar{Y}+z_{\alpha / 2}\left(\frac{S}{\sqrt{n}}\right)\right] \\
& =\left[2.71-(1.645)\left(\frac{0.51}{\sqrt{120}}\right), 2.71+(1.645)\left(\frac{0.51}{\sqrt{120}}\right)\right] \\
& =[2.63,2.79]
\end{aligned}
$$

