
LECTURE: CONSISTENCY

1. Consistency

We’ve seen 2 ways of measuring how good our estimator θ̂ is: Bias and
Mean-Square Error (MSE)

Recall:

Bias(θ̂) =E[θ̂]− θ

MSE(θ̂) =[Bias(θ̂)]2 +Var(θ̂)

Main Problem: Although the MSE is a good measure of the accu-
racy of an estimator, but it does not take into account the sample size n

Ideally, we would like to define an estimator as “good” if the probabil-
ity of “missing” the true parameter θ goes to 0 as the n → ∞. This is
called consistency.

Setting: Let Y1, . . . , Yn be iid samples from a population, and let θ̂n
be an estimator for a parameter θ

Here we use the subscript n to emphasize that the estimator depends
on the sample size n

Example: To estimate θ = µ, we use the estimator

θ̂n = Ȳn =
1

n

n∑
i=1

Yi

1
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Definition:

θ̂n is consistent for θ if for all ϵ > 0

lim
n→∞

P (|θ̂n − θ| ≥ ϵ) = 0

In other words, θ̂n is consistent if the probability that θ̂n misses the
true parameter θ (the “error”) goes to 0 as n → ∞

Note: This type of conv is called convergence in probability

In the case of unbiased estimators, we get a much easier formula:

Magic Consistency Formula:

Let θ̂n be an unbiased estimator for θ

Then θ̂n is consistent for θ if limn→∞Var(θ̂n) = 0

Why? Let ϵ > 0. Then by Chebyshev we get

P (|θ̂n − E(θ̂n)| ≥ ϵ) ≤ Var(θ̂n)

ϵ2

Since θ̂n is unbiased E(θ̂n) = θ, hence we get

P (|θ̂n − θ| ≥ ϵ) ≤ Var(θ̂n)

ϵ2

Taking the limit of both sides,

lim
n→∞

P (|θ̂n − θ| ≥ ϵ) ≤ 1

ϵ2
lim
n→∞

Var(θ̂n) = 0 (by assumption)
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Hence θ̂n is consistent for θ

Example 1:

Show that the sample mean Y n is a consistent estimator for µ

Ȳn =
1

n

n∑
i=1

Yi

We have shown that E
(
Ȳn

)
= µ for Ȳn is unbiased for µ

We also know that Var(Ȳn) =
σ2

n

n→∞−→ 0

Hence Ȳn is consistent for µ.

This implies one of the most fundamental results in probability:

Weak Law of Large Number:

Let Y1, · · · , Yn be iid with E(Yi) = µ then

Y n =
Y1 + · · ·+ Yn

n
−→ µ as n → ∞

Here the convergence is convergence in probability

Why important? Intuitively, we can think of expected value as tak-
ing the average of a large number of experiments, which is what Y n is.
As n gets large this says that Ȳn approaches the “true” average µ
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Note: We can similarly show that our unbiased estimator for variance
S2 is a consistent estimator for the population variance.

2. Method of Moments

So far we have only discussed three estimators: Ȳ , S2, and p̂

In practice, there are many more parameters we might like to estimate:
How can we construct estimators for them?

In this section we look at two methods of constructing estimators: the
method of moments and the maximum likelihood estimator (MLE)

Method of Moments: This method is based on the fact that the
sample mean Ȳ is close to the population mean µ.

The method of moments works as follows:

(1) Write the parameter of interest in terms of µ

(2) Replace µ by Ȳ to get our estimator

Example 2:

Suppose X ∼ Unif [0, b]

(a) Find the method of moments estimator for b

µ = E(X) =
0 + b

2
=

b

2
⇒ b = 2µ
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Replacing µ with Ȳ we then get b̂ = 2Ȳ

(b) Is b̂ consistent for b?

E(b̂) = E
(
2Ȳ

)
= 2µ = b

Hence b̂ is unbiased for b

Moreover, by the Magic Consistency Formula

Var(b̂) = Var(2Ȳ ) = 4Var(Ȳ ) = 4

(
σ2

n

)
= 4

(
b2

12n

)
=

b2

3n

n→∞−→ 0

Here we used that if X ∼ Unif [a, b] then Var(X) = (b−a)2

12

Hence b̂ is consistent for b

Example 3:

Suppose X ∼ Geom (p)

Find the method of moments estimator for p

µ = E(X) =
1

p
⇒ p =

1

µ
⇒ p̂ =

1

Y

Example 4:

Suppose X ∼ Poi (λ)

Find the method of moments estimator for λ
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µ = E(X) = λ ⇒ λ = µ ⇒ λ̂ = Ȳ

Note: Sometimes we cannot construct an method of moments estima-
tor in this way, i.e. we cannot solve for the parameter in terms of the
population mean µ.

Example 5:

Suppose X ∼ Unif [a, b]

Find the method of moments estimators for a and b

Sketch: Here µ = E(X) = a+b
2 but we cannot solve for either a or b

in terms of µ.

In that case we also use σ2 = (b−a)2

12 and then we get two equations for
the two unknowns a and b.

You solve for a and b in terms of µ and σ2 and replace µ by Y and σ2

by S2 to get your estimators â and b̂

Since the algebra gets messy really quickly, we will not be pursuing
this any further.

3. MLE: Motivation

The method of moments is very intuitive but often does not lead to
the best estimators. A second way of constructing estimators is called
the maximum likelihood estimator (MLE)
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Example 6:

You have a bag which contains three balls, which are either red
or white

Suppose we draw out two balls from the bag without replacement,
and they are both red

What is a good estimate of the number of red balls in the bag?

Since we drew two red balls, the bag either contains two red balls or
three red balls.

Scenario 1: The bag contains two red balls (and one white)

Then the probability of “Drawing two red balls” (= our draw) is 1
3

(draw a tree diagram)

Scenario 2: The bag contains three red balls

Then the probability of our draw is 1

Therefore, scenario 2 is more likely, so a reasonable estimate for the
number of red balls in the bag is 3, since that maximizes the probabil-
ity of our draw.

The method illustrated in the example above is known as the method
of maximum likelihood, since we choose the parameter which max-
imizes the probability of having our sample.
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