LECTURE: CONSISTENCY

1. CONSISTENCY

We’ve seen 2 ways of measuring how good our estimator 0 is: Bias and
Mean-Square Error (MSE)

Bias(d) =E[6] — 6
MSE(6) =[Bias(6))? + Var(f)

Main Problem: Although the MSE is a good measure of the accu-
racy of an estimator, but it does not take into account the sample size n

Ideally, we would like to define an estimator as “good” if the probabil-
ity of “missing” the true parameter 6 goes to 0 as the n — oo. This is
called consistency.

Setting: Let Yi,...,Y, be iid samples from a population, and let 0,
be an estimator for a parameter 6

Here we use the subscript n to emphasize that the estimator depends
on the sample size n

Example: To estimate § = u, we use the estimator

1=1
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~

0,, is consistent for 0 if for all € > 0

lim P(|6, — 6] > ¢) =0

n—oo

In other words, 0, is consistent if the probability that 0, misses the
true parameter 6 (the “error”) goes to 0 as n — oo

Note: This type of conv is called convergence in probability

In the case of unbiased estimators, we get a much easier formula:

Magic Consistency Formula:

Let 9n be an unbiased estimator for 6

Then 6, is consistent for 6 if lim,, . Var(én) =0

Why? Let ¢ > 0. Then by Chebyshev we get

P~ B@)] > ) < L)
€
Since 6, is unbiased E(6,) = 6, hence we get

€

Taking the limit of both sides,

. 1 R
lim P(|0,, — 0| > ¢) < = lim Var(d,) = 0 (by assumption)

n—00 62 n—00
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Hence 0,, is consistent for 6

Show that the sample mean Y, is a consistent estimator for p

We have shown that F (57”) — u for Y, is unbiased for

g2 N—0 0

We also know that Var(V;) = & —

n
Hence Y, is consistent for pu.

This implies one of the most fundamental results in probability:

Weak Law of Large Number:

Let Y1, - ,Y, be iid with E(Y;) = p then

_ Yi+..-4+Y
W = Lo e > L as n — 00
n

Here the convergence is convergence in probability

Why important? Intuitively, we can think of expected value as tak-
ing the average of a large number of experiments, which is what Y, is.
As n gets large this says that Y,, approaches the “true” average p
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Note: We can similarly show that our unbiased estimator for variance
S? is a consistent estimator for the population variance.

2. METHOD OF MOMENTS

So far we have only discussed three estimators: Y, S?, and p

In practice, there are many more parameters we might like to estimate:
How can we construct estimators for them?

In this section we look at two methods of constructing estimators: the
method of moments and the maximum likelihood estimator (MLE)

Method of 1\_/Ioments: This method is based on the fact that the
sample mean Y is close to the population mean p.

The method of moments works as follows:

(1) Write the parameter of interest in terms of u

(2) Replace p by Y to get our estimator

Suppose X ~ Unif [0, b]

(a) Find the method of moments estimator for b
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Replacing ;o with Y we then get b=2Y

(b) Is b consistent for b?

Hence b is unbiased for b

Moreover, by the Magic Consistency Formula

Var(b) = Var(2Y) = 4 Var(Y) = 4 (“—2) —4 (b—2) _ oy 0

n

Here we used that if X ~ Unif [a, b] then Var(X) = ! =

Hence b is consistent for b

Suppose X ~ Geom (p)

Find the method of moments estimator for p

Example 4:
Suppose X ~ Poi ()

Find the method of moments estimator for \
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p=EX)=A=A=pu=>A=Y

Note: Sometimes we cannot construct an method of moments estima-
tor in this way, i.e. we cannot solve for the parameter in terms of the
population mean pu.

Suppose X ~ Unif [a, b

Find the method of moments estimators for a and b

Sketch: Here = E(X) = % but we cannot solve for either a or b
in terms of .

Tn that case we also use 02 = Y=2° and then we get two equations for

12
the two unknowns a and b.

You solve for a and b in terms of 1 and o2 and replace 1 by Y and o2
by S? to get your estimators @ and b

Since the algebra gets messy really quickly, we will not be pursuing
this any further.

3. MLE: MOTIVATION

The method of moments is very intuitive but often does not lead to
the best estimators. A second way of constructing estimators is called
the maximum likelihood estimator (MLE)
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Example 6:

You have a bag which contains three balls, which are either red
or white

Suppose we draw out two balls from the bag without replacement,
and they are both red

What is a good estimate of the number of red balls in the bag?

Since we drew two red balls, the bag either contains two red balls or
three red balls.

Scenario 1: The bag contains two red balls (and one white)

W=

Then the probability of “Drawing two red balls” (= our draw) is
(draw a tree diagram)

Scenario 2: The bag contains three red balls

Then the probability of our draw is 1

Therefore, scenario 2 is more likely, so a reasonable estimate for the
number of red balls in the bag is 3, since that maximizes the probabil-
ity of our draw.

The method illustrated in the example above is known as the method

of maximum likelihood, since we choose the parameter which max-
imizes the probability of having our sample.
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