LECTURE: MAXIMUM LIKELIHOOD ESTIMATE

1. MLE

Setting: Suppose you're trying to find a "good" estimator $\hat{\theta}$ for an unknown parameter θ

Definition:

Let Y_1, Y_2, \ldots, Y_n be iid samples from a population with pmf $p_{\theta}(y)$ or density $f_{\theta}(y)$

The **likelihood** of the sample is given by:

 $L(Y_1, Y_2, \dots, Y_n | \theta) = p_{\theta}(Y_1) p_{\theta}(Y_2) \cdots p_{\theta}(Y_n)$ (discrete) $L(Y_1, Y_2, \dots, Y_n | \theta) = f_{\theta}(Y_1) f_{\theta}(Y_2) \cdots f_{\theta}(Y_n)$ (continuous)

Here we're using the subscript θ to emphasize the dependence on θ

Intuitively, think of L as the joint pmf/density of Y_1, \dots, Y_n

The maximum likelihood estimator (MLE) chooses the value of the parameter θ which maximizes the likelihood of our sample.

Definition:

The maximum likelihood estimator $\hat{\theta}_{\text{MLE}}$ is the value of θ which maximizes the likelihood $L(Y_1, Y_2, \ldots, Y_n | \theta)$

2. UNIFORM EXAMPLE

Example 1:

Suppose we have a population with a uniform distribution on [0, b]

Take samples Y_1, \ldots, Y_n from this distribution.

(a) Find the MLE for b

STEP 1: The density of a uniform distribution on [0, b] is

$$f_{\theta}(y) = \begin{cases} \frac{1}{b} & 0 \le y \le b\\ 0 & \text{otherwise} \end{cases}$$

STEP 2: Thus the likelihood function is

$$L(Y_1, Y_2, \dots, Y_n | \theta) = f_{\theta}(Y_1) f_{\theta}(Y_2) \cdots f_{\theta}(Y_n) = \begin{cases} \frac{1}{b^n} & 0 \le Y_i \le b \text{ for all } i \\ 0 & \text{otherwise} \end{cases}$$

We don't want L to be 0, since that is not a maximum, hence we need $0 \le Y_i \le b$ for all i

STEP 3: In order to make $\frac{1}{b^n}$ as *large* as possible, we need b to be as *small* as possible, while keeping the requirement $0 \le Y_i \le b$ for all i

Question: What is the smallest b such that [0, b] contains all the samples Y_i ?

Answer: Let b be the largest sample point $\max(Y_1, Y_2, \dots, Y_n)$

Hence our MLE is $\hat{b}_{\text{MLE}} = Y_{\text{max}} = \max(Y_1, Y_2, \dots, Y_n)$

Note: This is different from our method of moments estimator $2\bar{Y}$

(b) Is \hat{b}_{MLE} an unbiased estimator for b?

We need to find $E\left(\hat{b}_{\text{MLE}}\right)$ which requires finding the density of Y_{max} This is a little tricky to compute, but much easier in terms of CDFs.

STEP 1:

Let
$$Y \sim \text{Uniform}[0, b]$$
 and let $F(y) = P(Y \leq y)$ be the CDF of Y

Let $Y_{\text{max}} = \max(Y_1, Y_2, \dots, Y_n)$ and let F_{max} be the CDF for Y_{max} .

$$F_{\max}(y) = P(Y_{\max} \le y) = P(\max(Y_1, Y_2, \dots, Y_n) \le y) = P(Y_i \le y \text{ for all } i)$$

= $P(Y_1 \le y)P(Y_2 \le y) \cdots P(Y_n \le y)$
= $F(y)F(y) \cdots F(y)$
= $(F(y))^n$

STEP 2: Since the density of Y is $f(y) = \frac{1}{b}$ for $0 \le y \le b$ and the CDF is the integral of the density, we get

$$F(y) = \begin{cases} 0 & y < 0\\ \frac{y}{b} & 0 \le y \le b\\ 1 & y > 1 \end{cases}$$

Therefore
$$F_{\max}(y) = (F(y))^n = \left(\frac{y}{b}\right)^n$$
 if $0 \le y \le b$

STEP 4: Since the density is the derivative of the cdf we get

$$f_{\max}(y) = \frac{d}{dy} F_{\max}(y) = ny^{n-1} \frac{1}{b^n}$$

The density is 0 outside the interval [0, b], so with the appropriate limits the density becomes

$$f_{\max}(y) = \begin{cases} ny^{n-1}\frac{1}{b^n} & 0 \le y \le b\\ 0 & \text{otherwise} \end{cases}$$

STEP 5: Having the density, we can now calculate

$$E(Y_{\max}) = \int_0^b y f_{\max}(y) dy = \int_0^b y \left(n y^{n-1} \frac{1}{b^n} \right) dy = \frac{n}{b^n} \int_0^b y^n dy = \frac{n}{b^n} \left[\frac{y^{n+1}}{n+1} \right]_0^b$$
$$= \frac{n}{b^n} \left(\frac{b^{n+1}}{n+1} \right) = \left(\frac{n}{n+1} \right) b$$

Since this is not equal to b, the \hat{b}_{MLE} is a biased estimator for b

(c) Use (b) to find an unbiased estimator of \boldsymbol{b}

We can convert this to an unbiased estimator by multiplying it by $\frac{n+1}{n}$

Hence
$$\hat{b} = \left(\frac{n+1}{n}\right) Y_{\max} = \frac{n}{n+1} \max(Y_1, Y_2, \dots, Y_n)$$

Is an unbiased estimator for b

3. Geometric Example

4

Example 2:

Suppose we have a population which has a geometric distribution with parameter \boldsymbol{p}

Take samples Y_1, \ldots, Y_n from this distribution

Find the MLE for p

Recall:

The pmf for $Y \sim$ Geom (p) is

$$p(k) = P(Y = k) = (1 - p)^{k-1}p$$

STEP 1: Our likelihood function is:

$$L(Y_1, \dots, Y_n | p) = p(Y_1)p(Y_2) \cdots p(Y_n) = \prod_{i=1}^n (1-p)^{Y_i-1}p$$

Note: $\prod_{i=1}^{n}$ means take the product of all the $(1-p)^{Y_i-1}p$. It's like $\sum_{i=1}^{n}$ but with products

STEP 2: To maximize this, we need to use calculus: Differentiate with respect to p and set the derivative equal to zero.

This becomes messy in general, but much easier with:

Trick: Take logarithms

$$\ln L(Y_1, \dots, Y_n | p) = \ln \prod_{i=1}^n (1-p)^{Y_i - 1} p = \sum_{i=1}^n \ln (1-p)^{Y_i - 1} + \sum_{i=1}^n \ln p$$
$$= n \ln p + \sum_{i=1}^n (Y_i - 1) \ln (1-p)$$

Taking the derivative with respect to p:

$$\frac{d}{dp}\ln L(Y_1, ..., Y_n|p) = \frac{n}{p} + \sum_{i=1}^n (Y_i - 1)\left(\frac{-1}{1-p}\right) = \frac{n}{p} - \frac{1}{1-p}\left(\sum_{i=1}^n Y_i - \sum_{i=1}^n 1\right)$$
$$= \frac{1}{1-p}\left(\sum_{i=1}^n Y_i - n\right) = 0$$

STEP 3: Solve for p, since that's what we're trying to estimate

$$\frac{1}{1-p} \left(\sum_{i=1}^{n} Y_i - n \right) = \frac{n}{p}$$
$$p \left(\sum_{i=1}^{n} Y_i - n \right) = n(1-p)$$
$$p \left(\sum_{i=1}^{n} Y_i \right) - pp = n - pp$$
$$p = \frac{n}{\sum_{i=1}^{n} Y_i} = \frac{1}{\overline{Y}}$$

STEP 4: Answer:

Thus the MLE for the parameter p is $\hat{p}_{\text{MLE}} = \frac{1}{\bar{Y}}$

Note: This is the same estimator as the method of moments

Note: The trick works because if f is any positive function, then $\frac{d}{dx} \ln (f(x)) = \frac{f'(x)}{f(x)}$ so if the left-hand-side is zero, then f'(x) = 0 and vice-versa.

4. Poisson Example

Example 3:

Suppose we have a population which has a Poisson distribution with parameter λ .

Take samples Y_1, \ldots, Y_n from this distribution.

Find the MLE for λ

STEP 1: Using the Poisson pmf, The likelihood function is:

$$L(Y_1, \dots, Y_n | \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{Y_i}}{Y_i!} = e^{-\lambda} \frac{\lambda^{Y_1}}{Y_1!} \cdots e^{-\lambda} \frac{\lambda^{Y_n}}{Y_n!}$$
$$= e^{-n\lambda} \lambda^{Y_1 + \dots + Y_n} \frac{1}{Y_1! \cdots Y_n!} = e^{-n\lambda} \lambda^{n\bar{Y}} \prod_{i=1}^n \frac{1}{Y_i!}$$

STEP 2: To maximize this with respect to λ , we will once again maximize the log likelihood function.

$$\ln L(Y_1, \dots, Y_n | \lambda) = \ln(e^{-n\lambda}) + \ln(\lambda^{n\bar{Y}}) + \ln\left(\prod_{i=1}^n \frac{1}{Y_i!}\right)$$
$$= -n\lambda + n\bar{Y}\ln(\lambda) + \ln\left(\prod_{i=1}^n \frac{1}{Y_i!}\right)$$

Taking the derivative with respect to λ :

$$\frac{d}{d\lambda}\ln L(Y_1,\ldots,Y_n|\lambda) = -n + \frac{n\bar{Y}}{\lambda}$$

STEP 3: Setting this equal to 0, we get $\lambda = \overline{Y}$

Therefore our MLE estimator is $\hat{\lambda}_{MLE} = \bar{Y}$ which is the same estimator we got using the method of moments.