LECTURE: MAXIMUM LIKELIHOOD ESTIMATE

1. MLE

Setting: Suppose you're trying to find a “good” estimator 6 for an
unknown parameter 6

Let Y7,Y5,...,Y, be iid samples from a population with pmf
po(y) or density fo(y)

The likelihood of the sample is given by:

L(Y1,Ya, ..., Y,|0) = po(Y1)pa(Ya) - - - po(Yr) (discrete)
L(Y1,Ya, ..., Y,|0) = fo(Y1) fo(Ya)--- fo(Y,)  (continuous)

Here we're using the subscript 6 to emphasize the dependence on 6
Intuitively, think of L as the joint pmf/density of Y7, -- Y,

The maximum likelihood estimator (MLE) chooses the value of the
parameter # which maximizes the likelihood of our sample.

The maximum likelihood estimator éMLE is the value of 6
which maximizes the likelihood L(Y7,Y5,...,Y,|0)
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2. UNIFORM EXAMPLE

Example 1:

Suppose we have a population with a uniform distribution on [0, 0]

Take samples Y7, ...,Y,, from this distribution.
(a) Find the MLE for b

STEP 1: The density of a uniform distribution on [0, ] is

f@(y):{% 0<y=b

0 otherwise

STEP 2: Thus the likelihood function is

bn

L 0<Y;<bforalli
L(Yi7 Yé? s 7Yn|9) - fe(}/l)fe(yé) o f@(Yn) - {O otherwise

We don’t want L to be 0, since that is not a maximum, hence we need
0<Y,;, <bforalli

STEP 3: In order to make bin as large as possible, we need b to be as
small as possible, while keeping the requirement 0 < 'Y; < b for all ¢

Question: What is the smallest b such that [0, b] contains all the sam-
ples Y;?

Answer: Let b be the largest sample point max(Y;, Y, -+ ,Y})

Hence our MLE is byrg = Vi = max (Y1, Ys, ..., Y),)
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Note: This is different from our method of moments estimator 2Y

(b) Is byre an unbiased estimator for b?

We need to find £ (ISMLE) which requires finding the density of Y.«
This is a little tricky to compute, but much easier in terms of CDFs.
STEP 1:

Let Y ~ Uniform[0, 4] and let F(y) = P(Y < y) be the CDF of YV’

Let Yiax = max(Y7,Ys, ..., Y,) and let Fi.c be the CDF for Y.

Fiax(y) =P (Yimax <y) = P(max(Y1,Ys, ..., Y,) <y) = P(Y; <y for all 7)
=P(Y1 <y)P(Ya<y)---P(Y, <y)
=F(y)F(y)-- F(y)
=(F(y)"

STEP 2: Since the density of Y is f(y) = % for 0 < y < b and the
CDF is the integral of the density, we get

0 y<0
Fly)=q4% 0<y<b
1 y>1

Therefore Fi.(y) = (F(y))" = (%)n if0<y<b

STEP 4: Since the density is the derivative of the cdf we get

fmax(y) - o



4 LECTURE: MAXIMUM LIKELIHOOD ESTIMATE

The density is 0 outside the interval [0,b], so with the appropriate
limits the density becomes

fmax(y) = W 0Sy <
max 0 otherwise

STEP 5: Having the density, we can now calculate

b b b n+1 70
1 n N n
E(Yinax) :/ Y fmax(y)dy :/ y (ny” 1—) dy = — | y'dy = [y ]
0 0

b b Jy b n+1],
n bn—H n

= — — b
b \n+1 n-+1

Since this is not equal to b, the l;MLE is a biased estimator for b

(c) Use (b) to find an unbiased estimator of b

We can convert this to an unbiased estimator by multiplying it by ”TH

~ 1
Hence b = <n+ > Yiax = n max (Y7, Ys, ..., Y,)
n n+1

Is an unbiased estimator for b

3. GEOMETRIC EXAMPLE
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Example 2:

Suppose we have a population which has a geometric distribution
with parameter p

Take samples Y7, ...,Y, from this distribution

Find the MLE for p

The pmf for Y ~ Geom (p) is

STEP 1: Our likelihood function is:
L(Yi,...,Yalp) = p(V)p(Ya) -+ p(Yo) = [ J(1 = p)" 'p

Note: [];_; means take the product of all the (1 — p)¥~!p. It’s like
Z?:l but with products

STEP 2: To maximize this, we need to use calculus: Differentiate
with respect to p and set the derivative equal to zero.

This becomes messy in general, but much easier with:
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Trick: Take logarithms

InL(Ys,...,Yolp) =] J1=p)" 'p=) In(1—p)"" '+ Inp
i=1 i=1 i=1

Taking the derivative with respect to p:

d nooo —1 n 1 .
—InL(Y3,....Y,|p) =— + %—1(——>=————— Y, —
"0 ) =23 - () = (Z >

1 n

STEP 3: Solve for p, since that’s what we're trying to estimate

n

5 (5) -

1=1

STEP 4: Answer:

Thus the MLE for the parameter p is pyLg = +

>~<
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Note: This is the same estimator as the method of moments

Note: The trick works because if f is any positive function, then

LIn(f(z)) = J}I((i)) so if the left-hand-side is zero, then f’(z) = 0 and

vice-versa.

4. POISSON EXAMPLE
Example 3:

Suppose we have a population which has a Poisson distribution
with parameter .

Take samples Y7, ...,Y, from this distribution.

Find the MLE for A\

STEP 1: Using the Poisson pmf, The likelihood function is:

N AY % Y,
e )\ i B A 1 B )\ n
L(Yi,,Yn‘)\): Vi —e )\Yi'...e /\Y'
=1 v ' "
:e—n/\)\Yl—F-"-l-Yn, 1 — e—n/\)\nyﬁ i
ASA L1y

STEP 2: To maximize this with respect to A, we will once again
maximize the log likelihood function.

Y 1
n L(Yi,.., YalA) = In(e™™) + In(A"7) + In (H ﬁ)

— 1
= —nA+nY In(\) +1In (H ﬁ)

1=1
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Taking the derivative with respect to A:

d nY
ﬁlﬂL(Y&,,Yn‘/\) = —n—l—T

STEP 3: Setting this equal to 0, we get A =Y

Therefore our MLE estimator is S\MLE = Y which is the same estimator
we got using the method of moments.
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