
LECTURE: MAXIMUM LIKELIHOOD ESTIMATE

1. MLE

Setting: Suppose you’re trying to find a “good” estimator θ̂ for an
unknown parameter θ

Definition:

Let Y1, Y2, . . . , Yn be iid samples from a population with pmf
pθ(y) or density fθ(y)

The likelihood of the sample is given by:

L(Y1, Y2, . . . , Yn|θ) = pθ(Y1)pθ(Y2) · · · pθ(Yn) (discrete)

L(Y1, Y2, . . . , Yn|θ) = fθ(Y1)fθ(Y2) · · · fθ(Yn) (continuous)

Here we’re using the subscript θ to emphasize the dependence on θ

Intuitively, think of L as the joint pmf/density of Y1, · · · , Yn

The maximum likelihood estimator (MLE) chooses the value of the
parameter θ which maximizes the likelihood of our sample.

Definition:

The maximum likelihood estimator θ̂MLE is the value of θ
which maximizes the likelihood L(Y1, Y2, . . . , Yn|θ)
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2. Uniform Example
Example 1:

Suppose we have a population with a uniform distribution on [0, b]

Take samples Y1, . . . , Yn from this distribution.

(a) Find the MLE for b

STEP 1: The density of a uniform distribution on [0, b] is

fθ(y) =

{
1
b 0 ≤ y ≤ b

0 otherwise

STEP 2: Thus the likelihood function is

L(Y1, Y2, . . . , Yn|θ) = fθ(Y1)fθ(Y2) · · · fθ(Yn) =

{
1
bn 0 ≤ Yi ≤ b for all i

0 otherwise

We don’t want L to be 0, since that is not a maximum, hence we need
0 ≤ Yi ≤ b for all i

STEP 3: In order to make 1
bn as large as possible, we need b to be as

small as possible, while keeping the requirement 0 ≤ Yi ≤ b for all i

Question: What is the smallest b such that [0, b] contains all the sam-
ples Yi?

Answer: Let b be the largest sample point max(Y1, Y2, · · · , Yn)

Hence our MLE is b̂MLE = Ymax = max(Y1, Y2, . . . , Yn)
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Note: This is different from our method of moments estimator 2Ȳ

(b) Is b̂MLE an unbiased estimator for b?

We need to find E
(
b̂MLE

)
which requires finding the density of Ymax

This is a little tricky to compute, but much easier in terms of CDFs.

STEP 1:

Let Y ∼ Uniform[0, b] and let F (y) = P (Y ≤ y) be the CDF of Y

Let Ymax = max(Y1, Y2, . . . , Yn) and let Fmax be the CDF for Ymax.

Fmax(y) =P (Ymax ≤ y) = P (max(Y1, Y2, . . . , Yn) ≤ y) = P (Yi ≤ y for all i)

=P (Y1 ≤ y)P (Y2 ≤ y) · · ·P (Yn ≤ y)

=F (y)F (y) · · ·F (y)

= (F (y))n

STEP 2: Since the density of Y is f(y) = 1
b for 0 ≤ y ≤ b and the

CDF is the integral of the density, we get

F (y) =


0 y < 0
y
b 0 ≤ y ≤ b

1 y > 1

Therefore Fmax(y) = (F (y))n =
(y
b

)n
if 0 ≤ y ≤ b

STEP 4: Since the density is the derivative of the cdf we get

fmax(y) =
d

dy
Fmax(y) = nyn−1 1

bn
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The density is 0 outside the interval [0, b], so with the appropriate
limits the density becomes

fmax(y) =

{
nyn−1 1

bn 0 ≤ y ≤ b

0 otherwise

STEP 5: Having the density, we can now calculate

E(Ymax) =

∫ b

0

yfmax(y)dy =

∫ b

0

y

(
nyn−1 1

bn

)
dy =

n

bn

∫ b

0

yndy =
n

bn

[
yn+1

n+ 1

]b
0

=
n

bn

(
bn+1

n+ 1

)
=

(
n

n+ 1

)
b

Since this is not equal to b, the b̂MLE is a biased estimator for b

(c) Use (b) to find an unbiased estimator of b

We can convert this to an unbiased estimator by multiplying it by n+1
n

Hence b̂ =

(
n+ 1

n

)
Ymax =

n

n+ 1
max(Y1, Y2, . . . , Yn)

Is an unbiased estimator for b

3. Geometric Example
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Example 2:

Suppose we have a population which has a geometric distribution
with parameter p

Take samples Y1, . . . , Yn from this distribution

Find the MLE for p

Recall:

The pmf for Y ∼ Geom (p) is

p(k) = P (Y = k) = (1− p)k−1p

STEP 1: Our likelihood function is:

L(Y1, . . . , Yn|p) = p(Y1)p(Y2) · · · p(Yn) =
n∏

i=1

(1− p)Yi−1p

Note:
∏n

i=1 means take the product of all the (1 − p)Yi−1p. It’s like∑n
i=1 but with products

STEP 2: To maximize this, we need to use calculus: Differentiate
with respect to p and set the derivative equal to zero.

This becomes messy in general, but much easier with:
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Trick: Take logarithms

lnL(Y1, . . . , Yn|p) = ln
n∏

i=1

(1− p)Yi−1p =
n∑

i=1

ln(1− p)Yi−1 +
n∑

i=1

ln p

= n ln p+
n∑

i=1

(Yi − 1) ln(1− p)

Taking the derivative with respect to p:

d

dp
lnL(Y1, ..., Yn|p) =

n

p
+

n∑
i=1

(Yi − 1)

(
−1

1− p

)
=

n

p
− 1

1− p

(
n∑

i=1

Yi −
n∑

i=1

1

)

=
1

1− p

(
n∑

i=1

Yi − n

)
= 0

STEP 3: Solve for p, since that’s what we’re trying to estimate

1

1− p

(
n∑

i=1

Yi − n

)
=

n

p

p

(
n∑

i=1

Yi − n

)
= n(1− p)

p

(
n∑

i=1

Yi

)
−��np = n−��np

p =
n∑n
i=1 Yi

=
1

Ȳ

STEP 4: Answer:

Thus the MLE for the parameter p is p̂MLE = 1
Ȳ
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Note: This is the same estimator as the method of moments

Note: The trick works because if f is any positive function, then
d
dx ln (f(x)) =

f ′(x)
f(x) so if the left-hand-side is zero, then f ′(x) = 0 and

vice-versa.

4. Poisson Example
Example 3:

Suppose we have a population which has a Poisson distribution
with parameter λ.

Take samples Y1, . . . , Yn from this distribution.

Find the MLE for λ

STEP 1: Using the Poisson pmf, The likelihood function is:

L(Y1, . . . , Yn|λ) =
n∏

i=1

e−λλYi

Yi!
= e−λλ

Y1

Y1!
· · · e−λλ

Yn

Yn!

=e−nλλY1+···+Yn
1

Y1! · · ·Yn!
= e−nλλnȲ

n∏
i=1

1

Yi!

STEP 2: To maximize this with respect to λ, we will once again
maximize the log likelihood function.

lnL(Y1, . . . , Yn|λ) = ln(e−nλ) + ln(λnȲ ) + ln

(
n∏

i=1

1

Yi!

)

= −nλ+ nȲ ln(λ) + ln

(
n∏

i=1

1

Yi!

)
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Taking the derivative with respect to λ:

d

dλ
lnL(Y1, . . . , Yn|λ) = −n+

nȲ

λ

STEP 3: Setting this equal to 0, we get λ = Ȳ

Therefore our MLE estimator is λ̂MLE = Ȳ which is the same estimator
we got using the method of moments.
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