APMA 1650 - MIDTERM 2 - SOLUTIONS

1. (a)

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(y) d y & =\int_{0}^{2} c(2-y) d y \\
& =\int_{0}^{2} 2 c-c y d y \\
& =\left[2 c y-c\left(\frac{y^{2}}{2}\right)\right]_{0}^{2} \\
& =2 c(2)-c\left(\frac{2^{2}}{2}\right) \\
& =4 c-2 c \\
& =2 c=1
\end{aligned}
$$

$$
c=1 / 2
$$

(b)

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} y f(y) d y \\
& =\int_{0}^{2} y\left[\frac{1}{2}(2-y)\right] d y \\
& =\int_{0}^{2} y-\frac{1}{2} y^{2} d y \\
& =\left[\frac{y^{2}}{2}-\frac{1}{6} y^{3}\right]_{0}^{2} \\
& =\frac{4}{2}-\frac{8}{6} \\
& =2-\frac{4}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

$$
E(Y)=\frac{2}{3}
$$

2. (a) Let Y be the student's score.

Since we know $E(Y)=50$ by Markov's inequality with $a=65$, we have

$$
\begin{gathered}
P(Y \geq 65) \leq \frac{E(Y)}{65}=\frac{50}{65} \\
P(Y<65)=1-P(Y \geq 65)=1-\frac{50}{65}=\frac{15}{65}=\frac{3}{13}
\end{gathered}
$$

Answer: $3 / 13$
(b) Suppose $\operatorname{Var}(Y)=\sigma^{2}$

Then by Chebyshev's inequality with $a=10$ we have

$$
\begin{aligned}
& P(|Y-E(Y)| \geq 10) \leq \frac{\operatorname{Var}(Y)}{10^{2}} \\
& P(|Y-50|\geq 10) \leq \frac{\sigma^{2}}{100} \\
& P(40 \leq Y \leq 60)=P(-10 \leq Y-50 \leq 10) \\
&=P(|Y-50| \leq 10) \\
&=1-P(|Y-50| \geq 10) \\
& \geq 1-\frac{\sigma^{2}}{100}
\end{aligned}
$$

In order to ensure that this is ≥ 0.64 it's enough to have

$$
\begin{aligned}
1-\frac{\sigma^{2}}{100} & \geq 0.64 \\
-\frac{\sigma^{2}}{100} & \geq-0.36 \\
\frac{\sigma^{2}}{100} & \leq 0.36 \\
\sigma^{2} & \leq 36 \\
\sigma & \leq 6
\end{aligned}
$$

Therefore the largest standard deviation allowed is $\sigma=6$
3. (a)

$$
\begin{aligned}
E\left[\hat{\theta}_{3}\right] & =E\left[a \hat{\theta}_{1}+(1-a) \hat{\theta}_{2}\right] \\
& =a E\left[\hat{\theta}_{1}\right]+(1-a) E\left[\hat{\theta}_{2}\right] \\
& =a \theta+(1-a) \theta \\
& =\theta
\end{aligned}
$$

Hence $\hat{\theta_{3}}$ is an unbiased estimator of θ
(b) By the Magic MSE formula, we have

$$
\operatorname{MSE}\left(\hat{\theta_{3}}\right)=\left[\operatorname{Bias}\left(\hat{\theta_{3}}\right)\right]^{2}+\operatorname{Var}\left(\hat{\theta_{3}}\right)
$$

Since $\hat{\theta}_{3}$ is unbiased we have $\operatorname{Bias}\left(\hat{\theta}_{3}\right)=0$ hence we just need to find $\operatorname{Var}\left(\hat{\theta_{3}}\right)$.

But since $\hat{\theta_{1}}$ and $\hat{\theta_{2}}$ are independent, we have

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\theta_{3}}\right) & =\operatorname{Var}\left(a \hat{\theta_{1}}+(1-a) \hat{\theta_{2}}\right) \\
& =\operatorname{Var}\left(a \hat{\theta_{1}}\right)+\operatorname{Var}(1-a) \hat{\theta}_{2} \\
& =a^{2} \operatorname{Var}\left(\hat{\theta_{1}}\right)+(1-a)^{2} \operatorname{Var}\left(\hat{\theta_{2}}\right) \\
& =a^{2} \sigma_{1}^{2}+(1-a)^{2} \sigma_{2}^{2}
\end{aligned}
$$

$$
\operatorname{MSE}\left(\hat{\theta_{3}}\right)=a^{2} \sigma_{1}^{2}+(1-a)^{2} \sigma_{2}^{2}
$$

4. Since the sample size is large, by the Central Limit Theorem, \bar{Y} is approximately normal.

Since we don't know σ we use $\hat{\sigma}=\frac{S}{\sqrt{n}}=\frac{3}{10}=0.3$

$$
1-\alpha=0.6 \Rightarrow \alpha=0.4 \Rightarrow \frac{\alpha}{2}=0.2
$$

And from the z-table we get $-z_{\alpha / 2}=-0.8 \Rightarrow z_{\alpha / 2}=0.8$ and therefore our confidence interval is

$$
\begin{aligned}
{[\hat{L}, \hat{U}] } & =\left[\bar{Y}-\left(z_{\alpha / 2}\right) \hat{\sigma}, \bar{Y}+\left(z_{\alpha / 2}\right) \hat{\sigma}\right] \\
& =[50-(0.8)(0.3), 50+(0.8)(0.3)] \\
& =[50-0.24,50+0.24] \\
& =[49.76,50.24]
\end{aligned}
$$

5. (a)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y & =\int_{0}^{1} \int_{x^{2}}^{1} c x d y d x \\
& =\int_{0}^{1} c x\left(1-x^{2}\right) d x \\
& =\int_{0}^{1} c x-c x^{3} d x \\
& =\left[c\left(\frac{x^{2}}{2}\right)-c\left(\frac{x^{4}}{4}\right)\right]_{0}^{1} \\
& =\frac{c}{2}-\frac{c}{4} \\
& =\frac{c}{4}=1
\end{aligned}
$$

Hence $c=4$
(b)
$f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{x^{2}}^{1} 4 x d y=4 x\left(1-x^{2}\right)=4 x-4 x^{3}$
Since $0 \leq x \leq 1$ we have

$$
f_{X}(x)= \begin{cases}4 x-4 x^{3} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

