APMA 1650 - MIDTERM 2

Name	
Brown ID	
Signature	

1. $(5=2+3$ points $)$ Let Y be a continuous random var with density

$$
f(y)=\left\{\begin{array}{lc}
c(2-y) & 0 \leq y \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find the value of c that makes this a valid density function.
(b) In that case, find $E(Y)$. Simplify your answer

2. ($5=2+3$ points) Suppose the scores for a midterm exam have mean 50. Consider a randomly selected student's score. Simplify your answer.
(a) Find a lower bound on the prob that the score is below 65 .
(b) What is the largest standard deviation allowed to ensure that the probability that the score is between 40 and 60 is greater than or equal to 0.64 ?

| (a) |
| :--- | :--- |
| (b) |

3. $\left(5=2+3\right.$ points) Let $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be two (independent) estimators for a parameter θ

Suppose $E\left[\hat{\theta}_{1}\right]=E\left[\hat{\theta}_{2}\right]=\theta$ and $\operatorname{Var}\left(\hat{\theta}_{1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(\hat{\theta}_{2}\right)=\sigma_{2}^{2}$
Let $\hat{\theta}_{3}=a \hat{\theta}_{1}+(1-a) \hat{\theta}_{2} \quad($ where $0<a<1)$
(a) Show $\hat{\theta}_{3}$ in an unbiased estimator of θ
(b) Find $\operatorname{MSE}\left(\hat{\theta}_{3}\right)$

| (a) |
| :--- | :--- |
| (b) |

4. (5 points) Suppose you're taking $n=100$ iid samples $Y_{1}, Y_{2}, \cdots, Y_{n}$ Suppose $\bar{Y}=50$ and $S^{2}=9$

Find a 60% confidence interval for \bar{Y} as an estimator of μ. Simplify your answer. Some relevant (simplified) z values are

$\mathrm{F}(-2.3)=0.099$	$\mathrm{~F}(-0.8)=0.2005$	$\mathrm{~F}(-0.2)=0.4013$
$\mathrm{~F}(0.2)=0.5987$	$\mathrm{~F}(0.8)=0.7995$	$\mathrm{~F}(2.3)=0.9901$

5. ($5=3+2$ points) Let X and Y be random variables with joint density (assume $x \geq 0$)

$$
f(x, y)= \begin{cases}c x & \text { for } 0 \leq x^{2} \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of c for which $f(x, y)$ is a valid density
(b) In that case, find the marginal density $f_{X}(x)$

| (a) |
| :--- | :--- |
| $(\mathrm{b}) \mid$ |

APMA 1650 - MIDTERM 2
(Scratch Paper)

