APMA 1650 - MIDTERM 2

Name	
Brown ID	
Signature	

1. (5 = 2+3 points) Let Y be a continuous random var with density

$$f(y) = \begin{cases} c(2-y) & 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

(a) Find the value of c that makes this a valid density function.

(b) In that case, find E(Y). Simplify your answer

(a)			
(b)			

- 2. (5 = 2+3 points) Suppose the scores for a midterm exam have mean 50. Consider a randomly selected student's score. Simplify your answer.
 - (a) Find a lower bound on the prob that the score is below 65.
 - (b) What is the largest standard deviation allowed to ensure that the probability that the score is between 40 and 60 is greater than or equal to 0.64 ?

(a)	_		
(b)	-		

3. (5 = 2+3 points) Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two (independent) estimators for a parameter θ

Suppose $E[\hat{\theta}_1] = E[\hat{\theta}_2] = \theta$ and $Var(\hat{\theta}_1) = \sigma_1^2$ and $Var(\hat{\theta}_2) = \sigma_2^2$ Let $\hat{\theta}_3 = a\hat{\theta}_1 + (1-a)\hat{\theta}_2$ (where 0 < a < 1)

- (a) Show $\hat{\theta}_3$ in an unbiased estimator of θ
- (b) Find $MSE(\hat{\theta}_3)$

(a)	_		
(b)	-		

4. (5 points) Suppose you're taking n = 100 iid samples Y_1, Y_2, \dots, Y_n Suppose $\overline{Y} = 50$ and $S^2 = 9$

Find a 60% confidence interval for \overline{Y} as an estimator of μ . Simplify your answer. Some relevant (simplified) z values are

F(-2.3) = 0.099	F(-0.8) = 0.2005	F(-0.2) = 0.4013
F(0.2) = 0.5987	F(0.8) = 0.7995	F(2.3) = 0.9901

Answer:

5. (5 = 3 + 2 points) Let X and Y be random variables with joint density (assume $x \ge 0$)

$$f(x,y) = \begin{cases} cx & \text{for } 0 \le x^2 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the value of c for which f(x, y) is a valid density
- (b) In that case, find the marginal density $f_X(x)$

(a)			
(b)			

(Scratch Paper)