
APMA 1650 – Review Session 2

Monday, July 25, 2016

1. The following series of questions refers to the SAT, everyone’s favorite standardized
test.

(a) The mean score on the SAT math section is 511. What is an upper bound on the
probability that a student scores over 700?

Let X be the score on the SAT math section. Since we only know the mean, the
best estimate we can get comes from Markov’s Inequality:

P(X ≥ 700) ≤ E(X)

700
=

511

700
P(X ≥ 700) ≤ 0.73

This is not a very tight bound, but it is an upper bound nonetheless.

(b) The standard deviation is 120 of the SAT math section is 120. Can you get a
better upper bound on the probability that a student scores over 700?

The variance is the square of the standard deviation, so V ar[X] = 1202. To get a
score over 700, we need to exceed the mean by 189 points. Chebyshev’s inequality
gives us the probability of deviating from the mean by a certain amount, not the
probability of exceeding the mean. We can, however, still use it. Chebyshev’s
inequality says that:

P(|X − 511| ≥ 189) ≤ V ar(X)

1892
=

1202

1892

P(|X − 511| ≥ 189) ≤ 0.40

Since P(X ≥ 700) < P(|X − 511| ≥ 189), we can also conclude that:

P(X ≥ 700) ≤ 0.40

This is still not the greatest bound, but it is much better than the bound from
Markov’s inequality. If we happen to know (or suspect) that the distribution of
SAT scores is symmetric about its mean, then we could divide this by 2 to get:

P(X ≥ 700) =
1

2
P(|X − 511| ≥ 189) =

0.40

2
= 0.20

(c) The College Board makes great effort to ensure that SAT scores are roughly
normally distributed. Assuming this is the case, what is the probability that a
student scores over 700 on the SAT math section?
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P(X ≥ 700) = P
(
Z ≥ 700− 511

120

)
= P(Z ≥ 1.575)

= 0.0571

where we used the Z table and rounded 1.575 up to 1.58. The take-home mes-
sage from this problem (and the similar one on the homework) is that the more
information we know about a probability distribution, the better bound we can
obtain on outlier probabilities.

2. You are a barista at a local coffee shop. The average number of customers per hour
who enter your shop is 10. Assume customers arrive one-at-a-time and their arrivals
are independent from each other.

(a) What is the probability that fewer than 3 customers will enter your coffee shop
in one hour?

Let X be the number of customers who enter your coffee shop in one hour. The
best distribution to model X is a Poisson distribution with parameter λ = 10.
Then

P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)

=
e−10100

0!
+
e−10101

1!
+
e−10102

2!

(b) What is the average time between the arrival of two customers?

Let Y be the time between the arrival of two customers. Then Y is an exponential
random variable with the same parameter as the Poisson random variable X,
i.e. an exponential random variable with parameter λ = 10. Using the table of
common distributions, we have E(Y ) = 1/λ = 1/10 hours (i.e. 6 minutes)

(c) What is the probability that there will be an interval of 10 minutes or more be-
tween the arrival of one customer and the next?

Using the exponential density, and using the fact that 10 minutes is 1/6 hours,

P(Y > 10) =

∫ ∞
1/6

10e−10ydy

= lim
t→∞
−e−10y

∣∣∣t
1/6

= e−10/6 = e−5/3 ≈ 0.189
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3. Let X and Y have a joint density function given by

f(x, y) =

{
cx 0 ≤ y ≤ x ≤ 3

0 otherwise

(a) Find the value of c such that this is valid joint density function.

Integrate the joint density and set the integral equal to 1. Don’t forget to draw
the region so that you have the correct limits of integration.

1 =

∫ 3

0

∫ x

0

cxdydx

=

∫ 3

0

cxy
∣∣∣x
0
dx

=

∫ 3

0

cx2dx

=
cx3

3

∣∣∣3
0

= 9c

From this we conclude that c = 1/9.

(b) Find the marginal densities of X and Y .

fX(x) =

∫ x

0

1

9
xdy

=
1

9
xy
∣∣∣x
0

=
1

9
x2

With the appropriate bounds, this is

fX(x) =

{
1
9
x2 0 ≤ x ≤ 3

0 otherwise

fY (y) =

∫ 3

y

1

9
xdx

=
1

9

x2

2

∣∣∣3
y

=
1

18
(9− y2)
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With the appropriate bounds, this is

fY (y) =

{
1
18

(9− y2) 0 ≤ y ≤ 3

0 otherwise

(c) Find the expected values of X and Y .

EX =

∫ 3

0

xfX(x)dx

=

∫ 3

0

x
1

9
x2dx

=
1

9

∫ 3

0

x3dx

=
1

9

x4

4

∣∣∣3
0

=
1

9

34

4

=
9

4

EY =

∫ 3

0

yfY (y)dy

=

∫ 3

0

y
1

18
(9− y2)dy

=
1

18

∫ 3

0

(9y − y3)dy

=
1

18

(
9y2

2
− y4

4

)
|30

=
2

32

(
34

2
− 34

4

)
=

32

2

(
1

2
− 1

4

)
=

9

8

(d) Find the conditional density of Y given X = x.

F (y|x) =
1
9
x

1
9
x2

=
1

x
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With the appropriate bounds, this becomes:

F (y|x) =

{
1
x

0 ≤ y ≤ x

0 otherwise

In addition, we require that x 6= 0. We note that this is a Uniform[0, x] random
variable.

(e) Find P(Y ≤ 1/2|X = 1)

Plugging 1 in for x in the conditional density, we have:

F (y|X = 1) =

{
1 0 ≤ y ≤ 1

0 otherwise

This is the density of a Uniform[0,1] random variable! Thus P(Y ≤ 1/2|X = 1) =
1/2.

(f) Find the conditional expected value E(Y |X = x).

E(y|X = x) =

∫ x

0

y
1

x
dy

=
1

x

y2

2

∣∣∣x
0

=
1

x

x2

2

=
x

2

This makes sense given that the conditional distribution is a Uniform[0, x] random
variable.

4. Let X and Y be random variables with joint density given by

f(x, y) =

{
6(1− y) 0 ≤ x ≤ y ≤ 1

0 otherwise

Find the covariance of X and Y . Are X and Y independent?

To do this, we use the Magic Covariance Formula:

Cov(X, Y ) = E(XY )− E(X)E(Y )

This requires finding both marginal densities. Do not forget to draw the region first!

fX(x) =

∫ 1

x

6(1− y)dy

= (6y − 3y2)
∣∣∣1
x

= (6− 3)− (6x− 3x2)

= 3− 6x+ 3x2
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fY (y) =

∫ y

0

6(1− y)dx

= 6(1− y)x
∣∣∣y
0

= 6y(1− y)

The bounds on both marginal densities are from 0 to 1. Now compute the expected
values.

E(X) =

∫ 1

0

x(3− 6x+ 3x2)dx

=

∫ 1

0

(3x− 6x2 + 3x3)dx

=

(
3x2

2
− 2x3 +

3x4

4

)∣∣∣1
0

=
1

4

E(Y ) =

∫ 1

0

y6y(1− y)dy

=

∫ 1

0

(6y2 − 6y3)dy

=

(
2y3 − 6

4
y4
)∣∣∣1

0

=
1

2

Finally we find E(XY ). Recalling the formula for the expected value of a function of
two random variables,

E(XY ) =

∫ 1

0

∫ y

0

xy6(1− y)dxdy

=

∫ 1

0

6y(1− y)

∫ y

0

xdxdy

=

∫ 1

0

6y(1− y)
x2

2

∣∣∣y
0
dy

=

∫ 1

0

3y3(1− y)dy

= 3

(
y4

4
− y5

5

)∣∣∣1
0

=
3

20
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Thus the covariance is

Cov(X, Y ) = E(XY )− E(X)E(Y ) =
3

20
− 1

4

1

2
=

1

40

The covariance is not 0, so X and Y are not independent. Furthermore, the joint
density is not the product of the marginal densities.

5. A forester studying the effects of fertilization on pine forests is interested in estimating
the average basal area of pine trees (basal area is the area of a given section of land
that is occupied by the cross-section of tree trunks at their base). She has discovered
that these measurements (in square inches) are normally distributed with standard
deviation of 4 square inches.

(a) If she samples n = 9 trees, what is the probability that the sample mean will be
within 2 square inches of the population mean.

The sample mean Ȳ is normally distributed with standard deviation of σ/
√
n =

4/
√

9 = 4/3. The probability we want is:

P(|Ȳ − µ| ≤ 2) = P
(∣∣∣∣ Ȳ − µ4/3

∣∣∣∣ ≤ 2

4/3

)
= P(|Z| ≤ 1.5)

= P(−1.5 ≤ Z ≤ 1.5)

= 0.9332− 0.0668

= 0.8664

(b) If she would like the sample mean to be within 1 square inch of the population
mean with probability 0.90, how many trees must she measure in order to ensure
this degree of accuracy?

Here we want P(|Ȳ −µ| ≤ 1) = 0.90. In this case the standard deviation is 4/
√
n,

where n is unknown. Dividing by this, we get:

0.90 = P(|Ȳ − µ| ≤ 1) = P
(∣∣∣∣ Ȳ − µ4/

√
n

∣∣∣∣ ≤ 1

4/
√
n

)
= P(|Z| ≤

√
n/4)

By symmetry, we have P(Z ≤ −
√
n/4) = 0.05. Looking up the Z value on the z

table, we get a z value of -1.64 (taking the one for 0.0495 instead of 0.0505; either
one will do.) Thus we have:

√
n/4 = 1.64
√
n = 6.56

n = 43.03

So she needs to measure 44 trees (rounding this up to the nearest integer).
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6. There are 3 boxes on a table, containing 0, θ, and θ + 1 jellybeans. Each of n people
opens a box uniformly at random and takes the amount of jellybeans in the box. (The
boxes are reset after each person takes their turn.) Let X1, . . . , Xn be the number of
jellybeans taken by each of the n people.

(a) Show θ̂ = X̄ = (1/n)
∑n

i=1Xi is a biased estimator for θ.

E(θ̂) = E

(
1

n

n∑
i=1

Xi

)

=
1

n

n∑
i=1

E[Xi]

=
1

n

n∑
i=1

(
0 · 1

3
+ θ · 1

3
+ (θ + 1) · 1

3

)
=

1

n

n∑
i=1

1

3
(2θ + 1)

=
2

3
θ +

1

3

This is not equal to θ (unless θ = 1), thus this is a biased estimator.

(b) Based on the above, how can we modify θ̂ to convert it into an unbiased estimator.

If we look at the expression for θ above, we can turn it into θ by first subtracting
1/3 and then multiplying by 3/2. This gives us our unbiased estimator:

θ̂unbiased =
3

2

(
X̄ − 1

3

)
7. Suppose that the number of minutes late a RIPTA bus arrives is uniformly distributed

on an interval [0, 12]. Suppose you measured the delay of a RIPTA bus 64 times
and computed the sample mean Ȳ . What is the probability that the sample mean is
between 5 and 7 minutes?

The mean and variance of a Uniform[0, 12] random variable are 6 and (12−0)2/12 = 12.
By the central limit theorem, since the number of samples is large (≥ 30), we can
assume that Ȳ is (approximately) normally distributed with mean 6 and standard
deviation σ/

√
n =

√
12/
√

64 =
√

12/8. The probability that the sample mean is
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between 5 and 7 minutes is:

P(|Ȳ − 6| ≤ 1) = P
(∣∣∣∣ Ȳ − 6√

12/8

∣∣∣∣ ≤ 1√
12/8

)
= P(|Z| ≤ 8/

√
12)

= P(|Z| ≤ 2.31)

= P(−2.31 ≤ Z ≤ 2.31)

= 0.9896− 0.0104

= 0.9792
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