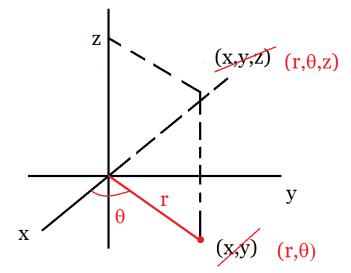
LECTURE 27: CYLINDRICAL COORDINATES

Today: We'll learn about cylindrical coordinates, a "new" coordinate system that helps us evaluate triple integrals. Strictly speaking it's not new because it's just polar coordinates.



Cylindrical Coordinates:

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z \end{cases}$$

(So just do polar on (x, y) and do nothing to z)

Date: Friday, October 29, 2021.

2. INTEGRALS IN CYLINDRICAL COORDINATES

Video: Cylindrical Integral

Exactly the same thing that we've been doing, just polar coordinates!

Evaluate the following integral, where E is the region between the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2

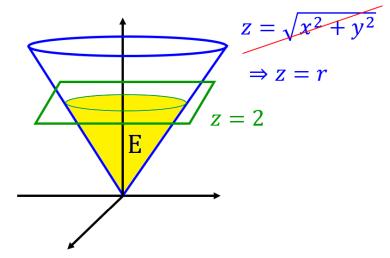
$$\int \int \int_E y^2 dx dy dz$$

Rule of Thumb:

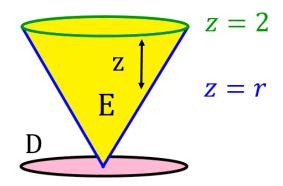
Example 1:

Use cylindrical whenever you see $x^2 + y^2$ or a cylinder or a cone

STEP 1: Picture:



 $\mathbf{2}$

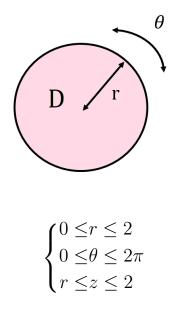


STEP 2: Inequalities:

Note: $z = \sqrt{x^2 + y^2} \Rightarrow z = r$ (much easier) Small $\leq z \leq$ Big $r \leq z \leq 2$

Find D:

Intersection: z = 2 and z = r gives r = 2, so D is a disk of radius 2



STEP 3: Integrate

Function: $f(x, y, z) = y^2 = (r \sin(\theta))^2 = r^2 \sin^2(\theta)$

 \triangle Do **NOT** forget about the r !!!!

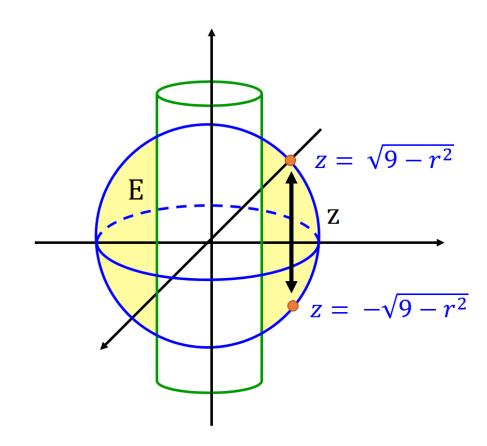
$$\begin{split} &\int \int \int_{E} y^{2} dx dy dz \\ &= \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r^{2} \sin^{2}(\theta) r dz dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r^{3} \sin^{2}(\theta) dz dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{2} (2 - r) r^{3} \sin^{2}(\theta) dr d\theta \\ &= \left(\int_{0}^{2} (2 - r) r^{3} dr \right) \left(\int_{0}^{2\pi} \sin^{2}(\theta) d\theta \right) \\ &= \left(\int_{0}^{2} 2r^{3} - r^{4} dr \right) \left(\int_{0}^{2\pi} \frac{1}{2} - \frac{1}{2} \cos(2\theta) d\theta \right) \\ &= \left[\frac{r^{4}}{2} - \frac{r^{5}}{5} \right]_{0}^{2} \left[\frac{\theta}{2} - \frac{1}{4} \sin(2\theta) \right]_{0}^{2\pi} \\ &= \left(\frac{16}{2} - \frac{32}{5} \right) \left(\frac{2\pi}{2} - 0 + 0 - 0 \right) \\ &= \frac{8\pi}{5} \end{split}$$

Example 2:

Evaluate the following integral, where E is the solid outside the cylinder $x^2 + y^2 = 4$ and inside the sphere $x^2 + y^2 + z^2 = 9$

$$\int \int \int_E \tan^{-1}\left(\frac{y}{x}\right) dx dy dz$$

STEP 1: Picture



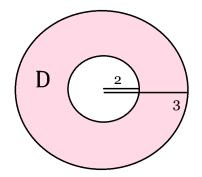
STEP 2: Inequalities:

 $x^2 + y^2 + z^2 = 9 \Rightarrow z^2 = 9 - x^2 - y^2 \Rightarrow z^2 = 9 - r^2 \Rightarrow z = \pm \sqrt{9 - r^2}$

Small
$$\leq z \leq$$
 Big
 $-\sqrt{9-r^2} \leq z \leq \sqrt{9-r^2}$

Find D:

If you set z = 0 in $x^2 + y^2 + z^2 = 9$ you get $x^2 + y^2 = 9$, which is a circle of radius 3. But since we're focusing on the part outside the cylinder $x^2 + y^2 = 4$, D is actually a ring (annulus):



$$\begin{cases} 2 \le r \le 3\\ 0 \le \theta \le 2\pi \end{cases}$$

STEP 3: Integrate

Function: $f(x, y, z) = \tan^{-1}\left(\frac{y}{x}\right) = \theta$

$$\int \int \int_{E} \tan^{-1}\left(\frac{y}{x}\right) dx dy dz$$
$$= \int_{0}^{2\pi} \int_{2}^{3} \int_{-\sqrt{9-r^{2}}}^{\sqrt{9-r^{2}}} \theta r dz dr d\theta$$
$$= \int_{0}^{2\pi} \int_{2}^{3} \theta r \left(\sqrt{9-r^{2}} - \left(-\sqrt{9-r^{2}}\right)\right) dr d\theta$$

$$\begin{split} &= \int_{0}^{2\pi} \int_{2}^{3} \theta \, r \left(2\sqrt{9 - r^{2}} \right) dr d\theta \\ &= \left(\int_{0}^{2\pi} \theta d\theta \right) \left(\int_{2}^{3} 2r (9 - r^{2})^{\frac{1}{2}} dr \right) \qquad (u = 9 - r^{2}) \\ &= \left[\frac{\theta^{2}}{2} \right]_{0}^{2\pi} \left[-\frac{2}{3} (9 - r^{2})^{\frac{3}{2}} \right]_{r=2}^{r=3} \\ &= \frac{4\pi^{2}}{2} \left(-\frac{2}{3} (9 - 9)^{\frac{3}{2}} + \frac{2}{3} (9 - 4)^{\frac{3}{2}} \right) \\ &= 2\pi^{2} \left(\frac{2}{3} 5\sqrt{5} \right) \\ &= \left(\frac{20\sqrt{5}}{3} \right) \pi^{2} \end{split}$$

3. Other Directions

Video: Integral over a Princess Cake

Just like last time, our region can sometimes face another direction, like the x-direction or the y-direction

Example 3:

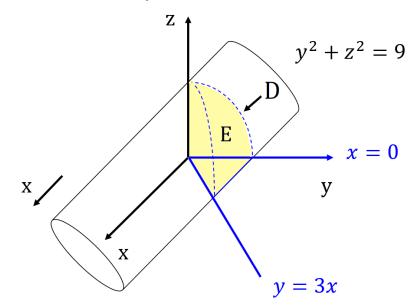
Evaluate the following integral, where E is the solid enclosed by the cylinder $y^2 + z^2 = 9$ and the planes x = 0 and y = 3x in the first octant

$$\int \int \int_E \sqrt{y^2 + z^2} \, dx dy dz$$

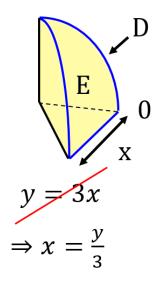
STEP 1: Picture:

 $y^2 + z^2 = 4$ is a cylinder in the *x*-direction

To draw this, start with the cylinder $y^2 + z^2 = 9$, and then cut a wedge along the lines x = 0 and y = 3x.



Re-Draw:



Here the region is in the x-direction.

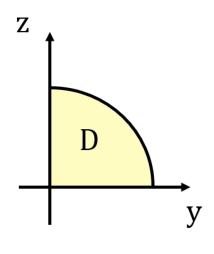
STEP 2: Inequalities:

Note that $y = 3x \Rightarrow x = \frac{y}{3}$

Back
$$\leq x \leq$$
 Front
 $0 \leq x \leq \frac{y}{3}$

STEP 3: Find D

Here D is the shadow in the back of E, which here is a disk of radius 3 in y and z (because of $y^2 + z^2 = 9$)



$$0 \le r \le 3$$
$$0 \le \theta \le \frac{\pi}{2}$$

Notice in particular here that $y = r \cos(\theta)$ and $z = r \sin(\theta)$

Therefore our inequalities are

$$\begin{cases} 0 \le x \le \frac{y}{3} = \frac{r\cos(\theta)}{3} \\ 0 \le r \le 3 \\ 0 \le \theta \le \frac{\pi}{2} \end{cases}$$

STEP 4: Integrate

Note: $\sqrt{y^2 + z^2} = r$ here.

$$\begin{split} \int \int \int_{E} \sqrt{y^{2} + z^{2}} \, dx \, dy \, dz \\ \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \int_{0}^{\frac{r}{3} \cos(\theta)} r \, \mathbf{r} \, dx \, dr \, d\theta \\ \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \int_{0}^{\frac{r}{3} \cos(\theta)} r^{2} \, dx \, dr \, d\theta \\ = \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} r^{2} \left(\frac{r}{3} \cos(\theta)\right) \, dr \, d\theta \\ = \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \frac{r^{3}}{3} \cos(\theta) \, dr \, d\theta \\ = \left(\int_{0}^{3} \frac{r^{3}}{3} \, dr\right) \left(\int_{0}^{\frac{\pi}{2}} \cos(\theta) \, d\theta\right) \\ = \left[\frac{r^{4}}{12}\right]_{0}^{3} [\sin(\theta)]_{0}^{\frac{\pi}{2}} \\ = \left(\frac{81}{12}\right) (1) \\ = \frac{27}{4} \end{split}$$

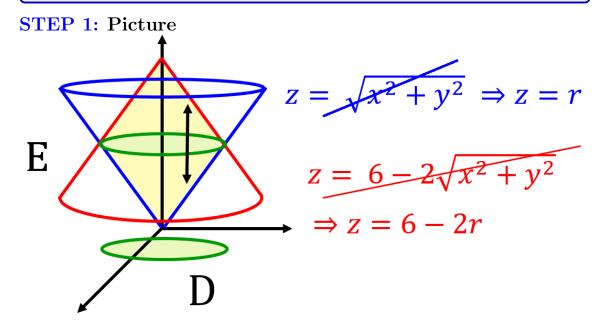
4. INTEGRAL OVER SIMS

Video: Integral over SIMS

Example 4: (extra practice)

Find the volume of the region E enclosed by the cones

$$z=\sqrt{x^2+y^2}$$
 and $z=6-2\sqrt{x^2+y^2}$



STEP 2: Inequalities:

Small
$$\leq z \leq$$
 Big
 $\sqrt{x^2 + y^2} \leq z \leq 6 - 2\sqrt{x^2 + y^2}$
 $r \leq z \leq 6 - 2r$

STEP 3: Find *D***:** Intersection:

$$\sqrt{x^2 + y^2} = 6 - 2\sqrt{x^2 + y^2}$$

$$r = 6 - 2r$$

$$3r = 6$$

$$r = 2$$

Hence D is a disk of radius 2, so

$$\begin{cases} 0 \le r \le 2\\ 0 \le \theta \le 2\pi\\ r \le z \le 6 - 2r \end{cases}$$

$$Vol(E) = \int \int \int_{E} 1 \, dx \, dy \, dz$$

= $\int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{6-2r} r \, dz \, dr \, d\theta$
= $2\pi \int_{0}^{2} r (6 - 2r - r) \, dr$
= $2\pi \int_{0}^{2} 6r - 3r^{2} dr$
= $2\pi [3r^{2} - r^{3}]_{0}^{2}$
= $2\pi (3(2)^{2} - 2^{3})$
= $2\pi (12 - 8)$
= $2\pi (4)$
= 8π

5. More Practice

Example 5:

Evaluate the following integral:

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{9-x^2-y^2} z \, dz \, dy \, dx$$

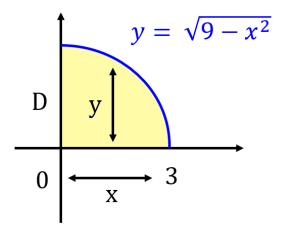
STEP 1: Inequalities:

$$\begin{cases} 0 \le z \le 9 - x^2 - y^2 \\ 0 \le y \le \sqrt{9 - x^2} \\ 0 \le x \le 3 \end{cases}$$

STEP 2: Find D

$$y = \sqrt{9 - x^2} \Rightarrow y^2 = 9 - x^2 \Rightarrow x^2 + y^2 = 9$$
 (circle of radius 3)

The inequalities for x and y tell us that D is a quarter circle of radius 3 in the first quadrant.



This gives us

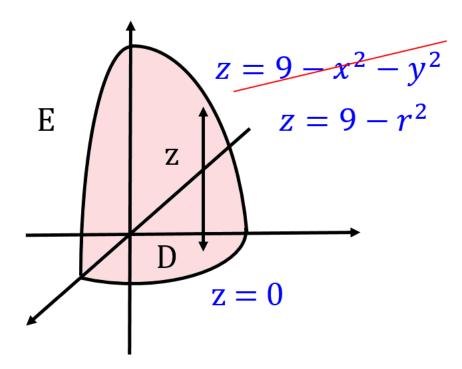
$$0 \le r \le 3$$
$$0 \le \theta \le \frac{\pi}{2}$$

STEP 3: Picture

Finally focus on z:

$$0 \le z \le 9 - x^2 - y^2$$

So z is between the plane z = 0 and the paraboloid $z = 9 - x^2 - y^2 = 9 - r^2$, and therefore our solid looks like this:



Inequalities:

14

$$\begin{cases} 0 \le r \le 3\\ 0 \le \theta \le \frac{\pi}{2}\\ 0 \le z \le 9 - r^2 \end{cases}$$

STEP 4: Integrate

$$\int \int \int_{E} z \, dx \, dy \, dz$$
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \int_{0}^{9-r^{2}} z \, r \, dz \, dr \, d\theta$$
$$= \frac{\pi}{2} \int_{0}^{3} \left[\left(\frac{z^{2}}{2} \right) r \right]_{z=0}^{z=9-r^{2}} dr$$
$$= \frac{\pi}{2} \int_{0}^{3} \frac{1}{2} \left(9 - r^{2} \right)^{2} r \, dr$$
$$= \frac{\pi}{4} \int_{0}^{3} 81r - 18r^{3} + r^{5} \, dr$$
$$= \frac{\pi}{4} \left[\frac{81}{2}r^{2} - \frac{9}{2}r^{4} + \frac{1}{6}r^{6} \right]_{0}^{3}$$
$$= \frac{243\pi}{8}$$