
LECTURE: NONLINEAR SYSTEMS

1. Classification of equilibrium points

Example 1: (continued)

Classify the equilibrium points (0, 0) and (2, 1) of{
x′ =− x+ xy

y′ =− 8y + 4xy

Case 1: (0, 0)

STEP 1: Find ∇F (0, 0)

∇F (x, y) =

[
∂(−x+xy)

∂x
∂(−x+xy)

∂y
∂(−8y+4xy)

∂x
∂(−8y+4xy)

∂y

]
=

[
−1 + y x
4y −8 + 4x

]

∇F (0, 0) =

[
−1 + 0 0
4(0) −8 + 4(0)

]
=

[
−1 0
0 −8

]
= A

STEP 2: Look at the eigenvalues of A =

[
−1 0
0 −8

]
which are

λ = −1 < 0 and λ = −8 < 0

1
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Summary: Classification

Let (a, b) be an equilibrium solution and let A = ∇F (a, b)

If the eigenvalues of A are

(1) All negative (or negative real part) then (a, b) is stable

(2) All positive (or positive real part) then (a, b) is unstable

(3) Positive and Negative, then (a, b) is a saddle

Therefore (0, 0) is stable

Why true? Here solutions to x′ = Ax go to (0, 0) as t → ∞ because
solutions are of the form

x(t) = C1e
−t

[
⋆
⋆

]
+ C2e

−8t

[
⋆
⋆

]

By definition of a derivative, solutions to x′ = F (x) are close to solu-
tions of x′ = Ax as illustrated in the picture below
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Hence solutions to x′ = F (x) go towards (0, 0) as well:
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Remarks:

(1) An example of a saddle is given below

(2) If one of the eigenvalues is 0 or purely imaginary like λ = ±3i
this is called degenerate and will be dealt on a case-by-case
basis.

(3) Here is an example with λ = −2 ± 3i where the real part of
λ is negative. (0, 0) is still stable: Solutions near (0, 0) move
towards it
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Case 2: (2, 1)

∇F (x, y) =

[
−1 + y x
4y −8 + 4x

]
∇F (2, 1) =

[
−1 + 1 2
4(1) −8 + 4(2)

]
=

[
0 2
4 0

]
= A

Eigenvalues:

|A− λI| =
∣∣∣∣−λ 2
4 −λ

∣∣∣∣ = λ2 − 8 = 0 ⇒ λ = ±
√
8

Since one eigenvalue is positive and one is negative (2, 1) is a saddle
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2. Application 1: Competing Species

Recall: In our population adventure, discussed the logistic equation

Logistic Equation

y′ = 3y
(
1− y

20

)
3 is the growth rate and 20 is the limiting population/carrying capacity.

We saw that this was a pretty good model for population growth.

Question: What if you have two animal species, say rabbits and
sheep, that are living together?
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Note: This is NOT a bunnies vs. fox model, because the sheep do
not eat the bunnies. That said, both populations still compete with
each other for limited resources. Think for instance where the supply
of hay is limited and they both need to eat it for survival.

Unknowns: {
x(t) = Population of Rabbits

y(t) = Population of Sheep

One simple way of modeling x(t) and y(t) is to have two separate
logistic equations:

Logistic Model:
x′ =3x

(
1− x

3
2

)
y′ =2y

(
1− y

2

) ⇒

{
x′ =3x− 2x2

y′ =2y − y2
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This is BAAAAAAD because it doesn’t take into account the inter-
action between the bunnies and the sheep! In particular, you should
expect that, the more bunnies there are, the less hay will be available
for sheep, which slows the population of sheep.

Our Model: {
x′ =3x− 2x2−xy

y′ =2y − y2−xy

This makes sense, because if there are no bunnies, then x = 0 and
so −xy = 0 so the sheep will grow according to the logistic model
y′ = 2y − y2 The − sign accounts for the competition between the
species.

Note: You can generalize this by putting different constants in front
of the −xy like −2xy for x′ and −3xy for y′

3. Equilibria

Example 2:

Find the equilibrium points of the system above

{
x′ =3x− 2x2 − xy = 0

y′ =2y − y2 − xy = 0
⇒

{
x (3− 2x− y) =0

y (2− y − x) =0

Case 1: x = 0

Then either y = 0 which gives (0, 0)
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Or 2− y − x = 0 ⇒ 2− y − 0 = 0 ⇒ y = 2 which gives (0, 2)

Case 2: 3− 2x− y = 0

Either y = 0, so 3− 2x− y = 0 ⇒ 3− 2x− 0 = 0 ⇒ x = 3
2 so

(
3
2 , 0

)
Or 2− y − x = 0, and so we have to solve the system{

3− 2x− y =0

2− y − x =0

Use 2− y − x = 0 ⇒ y = 2− x and hence

3− 2x− (2− x) = 0 ⇒ 1− x = 0 ⇒ x = 1

And y = 2− x = 2− 1 = 1 which gives (1, 1)

Answer: (0, 0), (0, 2),

(
3

2
, 0

)
, (1, 1)

4. Classification

Example 3:

Classify the equilibria above

∇F (x, y) =

∂(3x−2x2−xy)
∂x

∂(3x−2x2−xy)
∂y

∂(2y−y2−xy)
∂x

∂(2y−y2−xy)
∂y

 =

[
3− 4x− y −x

−y 2− 2y − x

]
Case 1: (0, 0)

∇F (0, 0) =

[
3− 0− 0 0

0 2− 0− 0

]
=

[
3 0
0 2

]
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The eigenvalues are λ = 3 > 0 and λ = 2 > 0, so (0, 0) is unstable

Case 2: (0, 2)

∇F (0, 2) =

[
3− 0− 2 0

−2 2− 2(2)− 0

]
=

[
1 0
−2 −2

]
The eigenvalues are λ = 1 > 0 and λ = −2 < 0, so (0, 2) is a saddle

Case 3:
(
3
2 , 0

)
∇F

(
3

2
, 0

)
=

[
3− 4

(
3
2

)
− 0 −3

2
−0 2− 2(0)− 3

2

]
=

[
−3 −3

2
0 1

2

]
The eigenvalues are λ = −3 < 0 and λ = 1

2 > 0 so
(
3
2 , 0

)
is a saddle

Case 4: (1, 1)

∇F (1, 1) =

[
3− 4(1)− 1 −1

−1 2− 2(1)− 1

]
=

[
−2 −1
−1 −1

]
Eigenvalues:

det(A− λI) =

∣∣∣∣−2− λ −1
−1 −1− λ

∣∣∣∣
=(−2− λ) (−1− λ)− (−1)(−1)

=2 + 2λ+ λ+ λ2 − 1

=λ2 + 3λ+ 1 = 0

λ =
−3±

√
32 − 4(1)(1)

2
=

−3±
√
5

2

λ =
−3−

√
5

2
< 0 and λ =

−3 +
√
5

2
< 0 hence (1, 1) is stable
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(Here we used
√
5 < 3 which follows since

(√
5
)2

< 32, which is 5 < 9)

Classification:

(0, 0) unstable (0, 2) saddle

(
3

2
, 0

)
saddle (1, 1) stable

In other words, so far we have the following picture:

(The orientation of the saddle points is yet to be confirmed)
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