LECTURE: ECOLOGY: COMPETING SPECIES

1. RECAP

Last time: Studied the dynamics of rabbits and sheep, which compete with each other for limited resources.

$$
\left\{\begin{array}{l}
x(t)=\text { Population of Rabbits } \\
y(t)=\text { Population of Sheep }
\end{array}\right.
$$

Our Model:

$$
\left\{\begin{array}{l}
x^{\prime}=3 x-2 x^{2}-x y \\
y^{\prime}=2 y-y^{2}-x y
\end{array}\right.
$$

Goal: Will one of the populations go extinct? Will they coexist?

Equilibrium Points:

$$
(0,0) \text { unstable } \quad(0,2) \text { saddle } \quad\left(\frac{3}{2}, 0\right) \text { saddle } \quad(1,1) \text { stable }
$$

In other words, so far we have the following picture:

(The orientation of the saddle points is yet to be confirmed)

2. NULLCLINES

To complete this, let's study the behavior of solutions on the axes $x=0, y=0, x=\frac{3}{2}$ and $y=2$ (see picture below)

Case 1: $x=0$ (no rabbits)
Then our system becomes

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 (0) - 2 (0) ^ { 2 } - 0 (y) } \\
{ y ^ { \prime } = 2 y - y ^ { 2 } - 0 (y) }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x ^ { \prime } = 0 } \\
{ y ^ { \prime } = 2 y - y ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{\prime}=0 \\
y^{\prime}=y(2-y)
\end{array}\right.\right.\right.
$$

On the part of the axis $x=0$ where $0 \leq y \leq 2$ (see picture below) we have $y^{\prime}=y(2-y) \geq 0$ so y is increasing and the arrows go up.

Interpretation: In the absence of bunnies, the population of sheep is increasing until it reaches the carrying capacity $y=2$.

Case 2: $y=0$ (no sheep)
This is similar; in this case the system becomes

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 x - 2 x ^ { 2 } } \\
{ y ^ { \prime } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{\prime}=x(3-2 x) \\
y^{\prime}=0
\end{array}\right.\right.
$$

And we get x is increasing until it reaches the carrying capacity $\frac{3}{2}$
Case 3: $y=2$ (sheep reached the carrying capacity)

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 x - 2 x ^ { 2 } - x (2) } \\
{ y ^ { \prime } = 2 (2) - 2 ^ { 2 } - x (2) }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x ^ { \prime } = x - 2 x ^ { 2 } } \\
{ y ^ { \prime } = - 2 x }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{\prime}=x(1-2 x) \\
y^{\prime}=-2 x
\end{array}\right.\right.\right.
$$

From the second equation, we have $y^{\prime}=-2 x<0$ so on the axis $y=2$, the arrows are pointing down

Note: You can get even more info by studying the sign of x^{\prime} but for our purposes this is enough

Interpretation: If the sheep reach their carrying capacity, their population will start to decrease, due to the competition with the rabbits.

Case 4: $x=\frac{3}{2}$ (rabbits reached the carrying capacity)

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 (\frac { 3 } { 2 }) - 2 (\frac { 3 } { 2 }) ^ { 2 } - \frac { 3 } { 2 } y } \\
{ y ^ { \prime } = 2 y - y ^ { 2 } - \frac { 3 } { 2 } y }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x ^ { \prime } = \frac { 9 } { 2 } - \frac { 9 } { 2 } - \frac { 3 } { 2 } y } \\
{ y ^ { \prime } = \frac { 1 } { 2 } y - y ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{\prime}=-\frac{3}{2} y \\
y^{\prime}=\frac{1}{2} y-y^{2}
\end{array}\right.\right.\right.
$$

We have $x^{\prime}=-\frac{3}{2} y<0$ so on the axis $x=\frac{3}{2}$ the arrows point to the left
Note: Curves where $x^{\prime}=0$ or $y^{\prime}=0$ are called nullclines. So here $x=0$ and $y=0$ are nullclines but $y=2$ and $x=\frac{3}{2}$ are not

Now we can complete the picture we had at the beginning:

And we can draw some sample solutions simply by following the arrows

Epic Conclusion:

The two species won't go extinct!! They will happily coexist and eventually reach the equilibrium $(1,1)$

EXCEPT we need to rule out periodic curves:
3. Periodic Curves (more practice)

What if we have a periodic curve, where the x and y go back-and-forth?

Let's show that this doesn't happen by studying the axes $y=1$ and $x=1$ which are the axes where $(1,1)$ lies on.

Case 1: $y=1$

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 x - 2 x ^ { 2 } - x (1) } \\
{ y ^ { \prime } = 2 (1) - 1 ^ { 2 } - x (1) }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{\prime}=2 x-2 x^{2} \\
y^{\prime}=1-x
\end{array}\right.\right.
$$

Here $y^{\prime}=1-x$ is positive if $x<1$ and negative if $x>1$

So on the axis $y=1$, if $x<1$, the arrows are pointing up, and if $x>1$, they are pointing down.

Case 2: $x=1$

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 (1) - 2 (1) ^ { 2 } - 1 y } \\
{ y ^ { \prime } = 2 y - y ^ { 2 } - 1 y }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{\prime}=1-y \\
y^{\prime}=-y^{2}+y
\end{array}\right.\right.
$$

Here $x^{\prime}=1-y$ is positive if $y<1$ and negative if $y>1$
So on the axis $x=1$, if $y<1$, the arrows are pointing to the right, and if $y>1$, they are pointing to the left

We can therefore complete the picture as below.
Now look at the second quadrant (shaded in yellow) and try to draw a cycle that is consistent with the arrows! This is impossible and tells you that there can't be a periodic curve.

4. Application 2: Epidemiology: SIR models

Goal: ODE model for COVID-19. In particular, we'd like to know
(1) How does COVID-19 spread?
(2) When do outbreaks occur?
(3) How to "flatten the curve?" How to manage outbreaks?
(4) How to prevent outbreaks? How effective are vaccines, really?

Suppose you have three groups of people:

$$
\left\{\begin{aligned}
S & =\text { susceptible (exposed to COVID }) \\
I & =\text { Infected } \\
R & =\text { Recovered }
\end{aligned}\right.
$$

Assumptions:

(1) An infected person immediately infects other people
(2) Recovered people don't get reinfected, they are immune

Because of the interactions between the groups, it makes sense to think of this as a compartmental/chemical tank problem:

We just need to figure out the rates between each tank:
$I \rightarrow R$ This rate is constant, equal to γ
γ is the percentage of the infected population that recovers per day.
Note: $1 / \gamma$ is called the mean residence time of the disease. In other words, if $\gamma=0.25$ then 25% of infected people recover per day so 1 person recovers fully after $1 / \gamma=4$ days
$S \rightarrow I$ This rate depends on I : The bigger the number of infected people, the faster the suspected people become infected

Assume the rate $S \rightarrow I$ is $\underbrace{\left(\frac{b}{N}\right)}_{\text {Some number }} I$

$$
\begin{aligned}
N & =S+I+R \text { (the total population) } \\
b & =\text { number of people a sick person infects per day }
\end{aligned}
$$

Hence we can complete our model:

$$
\begin{aligned}
& S^{\prime}(t)=\text { In }- \text { Out }=0-\left(\frac{b}{N}\right) I(t) \times S(t) \\
& I^{\prime}(t)=\text { In }- \text { Out }=\left(\frac{b}{N}\right) I(t) \times S(t)-\gamma \times I(t) \\
& R^{\prime}(t)=\text { In }- \text { Out }=\gamma \times I(t)-0
\end{aligned}
$$

SIR Model:

$$
\left\{\begin{aligned}
S^{\prime} & =-\left(\frac{b}{N}\right) S I \\
I^{\prime}(t) & =\left(\frac{b}{N}\right) S I-\gamma I \\
R^{\prime}(t) & =\gamma I
\end{aligned}\right.
$$

Note: If you add up all three equations, you get

$$
(S+I+R)^{\prime}=-\left(\frac{b}{N}\right) S I+\left(\frac{b}{N}\right) S I-\gamma I+\gamma I=0
$$

So the total population $N=S+I+R$ is constant.
Simplification: Since $S+I+R=N$ we can just focus on S and I and calculate R from $R=N-S-I$

Reduced Model:

$$
\left\{\begin{array}{l}
S^{\prime}=-\left(\frac{b}{N}\right) S I \\
I^{\prime}=\left(\frac{b}{N}\right) S I-\gamma I
\end{array}\right.
$$

5. Re-scaling Time

To simplify this further, let's re-scale time
That is, define a new unit of time τ so that

$$
\tau=1 \Leftrightarrow t=\frac{1}{\gamma} \text { (mean residence time of the disease) } \Leftrightarrow \gamma t=1
$$

Therefore define $\tau=\gamma t$
And define x and y to be $\frac{S}{N}$ and $\frac{I}{N}$ but with our new variables

$$
\begin{aligned}
& x(\tau)=\frac{S(t)}{N}=\frac{S\left(\frac{\tau}{\gamma}\right)}{N} \\
& y(\tau)=\frac{I(t)}{N}=\frac{I\left(\frac{\tau}{\gamma}\right)}{N}
\end{aligned}
$$

Interpretation: x and y represent the fraction of people that are susceptible resp. infected

Rewrite SIR in terms of x and y

$$
\text { Note: } x(\tau)=\frac{S(t)}{N} \Rightarrow S(t)=N x(\tau)=N x(\gamma t)
$$

Therefore $S^{\prime}(t)=(N x(\gamma t))^{\prime}=N x^{\prime}(\gamma t)(\gamma t)^{\prime}=\gamma N x^{\prime}(\tau)$
And our ODE becomes

$$
\begin{aligned}
S^{\prime}(t) & =-\left(\frac{b}{N}\right) S(t) I(t) \\
\gamma X x^{\prime}(\tau) & =-\left(\frac{b}{X}\right)(X x(\tau))(X y(\tau)) \\
\gamma x^{\prime}(\tau) & =-b x(\tau) y(\tau)
\end{aligned}
$$

Similarly for $I^{\prime}(t)$ and so the new re-scaled model becomes:

$$
\left\{\begin{array}{l}
x^{\prime}=-\left(\frac{b}{\gamma}\right) x y \\
y^{\prime}=\left(\frac{b}{\gamma}\right) x y-y
\end{array}\right.
$$

So if we let $R_{0}=b / \gamma$ then we get

Re-Scaled Model:

$$
\left\{\begin{array}{l}
x^{\prime}=-R_{0} x y \\
y^{\prime}=R_{0} x y-y
\end{array}\right.
$$

Interpretation of R_{0} : Notice $R_{0}=b \times(1 / \gamma)$
b is the number of people a sick person infects per day
$1 / \gamma$ is the duration of an infection.
Hence R_{0} is the number of people that get infected while someone is infectious

Note: $R_{0}>1$ means each sick person infects at least one other person over the course of being sick. It will be interesting to distinguish the cases $R_{0}<1$ and $R_{0}>1$ and we will indeed do so later

